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SUMMARY 
The paper is focused on Predictive Control Algorithm design for time-invariant state space models of dynamic systems 

with various dynamics, (mechanical system-helicopter, hydraulical system - three tanks with interaction). The predictive 
control algorithm based on state space models is verified by simulation schemes in language Matlab/Simulink using 
architecture of S-functions of the library PredicLib. The results are presented by created Internet applications using the 
technology Matlab Web Server. Internet applications enable to simplify the usage of designed predictive algorithms for 
testing their properties at various dynamics of MIMO non-linear systems without the proper installation language 
Matlab/Simulink on client’s PC. 
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1.   INTRODUCTION 
 

The method of predictive control is a powerful 
model-based approach for control of processes from 
industry, which enables user to handle different 
control requirements (limits, constraints). 

Model Predictive Control (MPC) is the method 
of control in which the goal is to compute such 
a future control sequence, that the future system 
output is driven as close as possible the reference 
trajectory. This is accomplished by minimizing 
quadratic multistage cost function defined over the 
prediction horizon [4], [5]. 

The key features of MPC are: 
• an explicit using of a model of dynamic system 

to predict the system output at the future time 
(horizon of prediction), 

• the calculation of a control sequence by 
minimizing of the cost function, 

• the receding strategy - calculation of the actual 
manipulated variable in each control step. 

The various MPC algorithms differ among 
themselves in the model used to represent the 
process and the cost function to be minimized. By 
Generalized Predictive Control (GPC) algorithm 
plant model is often in form of the rational transfer 
function. In this case the solution of Diophantine 
equations is required to compute prediction of the 
system output [1], [2]. 

The predictive control algorithm presented in this 
paper is based on the mathematical-physical models 
of the controlled dynamic systems in the state space 
(mechanical system - helicopter, hydraulic system - 
three tanks with interaction).  For using a state space 
formulation of the predictive control algorithm the 
states of the system are necessary to be known. 
When, the states of the system are not available (are 

not measured), then the states of the system are 
estimated by the linear state space observer based on 
Kalman estimator [1]. 

The paper is focused on the predictive control 
algorithm design for time-invariant state space 
models with various dynamics. The predictive 
control algorithm is verified by simulation schemes 
in language Matlab/Simulink using architecture of 
S-functions of the library PredicLib [7].  The results 
are presented by created an internet applications 
using technology Matlab Web Server (MWS) [7], 
[10]. 

 
2. PREDICTIVE CONTROL BASED ON 

STATE SPACE MODEL OF THE SYSTEM 
 
The Model Predictive Control is a multistage 

approach, combining feedforward and feedback 
control design.  

The feedforward control design is represented by 
the predictions based on the mathematical model of 
the dynamic system. This part is dominant 
component of the control actions. The feedback 
control design from measured outputs serves for 
compensation of some bounded model inaccuracies 
and low external disturbances. The design consists 
from local minimization of quadratic criterion (1) in 
which the predictions from the equations of the 
predictions are involved. The minimization is 
repeated in each time step [4]. 

The cost function for predictive control 
calculating for k-th step can be represented as 
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where pN  is predictive horizon, iμ , lλ  are the 
positive weight coefficients for the output and the 
input, ˆ ( | )iy k j k+  is predicted system output value, 

( | )ir k j k+  is required system output (reference) 
value for i-th output of the system. 

The first term in the performance criterion refers 
to the square variation of the predicted system 
output from the desired reference trajectory, while 
the second term is added in order to limit the 
controller output, greater λ  yields less active 
controller output. 

The predictive control algorithm design is based 
on the linearized equations of discrete state space 
model of the dynamic system, which will be used to 
compute of the predictor. 

Let us consider linear discrete state space model 
of the dynamic system 
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where ( )kx  denotes the state vector  (dimension n), 

( )ky  denotes the system outputs or measurements 
to be controlled (dimension n) and ( )ku  (dimension 
m) denotes the system inputs (or the controller 
outputs), A , B , C  are the matrices defining the 
state space model. In generally for the real systems 
the matrix 0=D .  

The model maps interval of one sampling period. 
Principle of the equations of predictions is 
expression of future values of the outputs ( )ky  from 
the current measured state ( )kx  as follows 
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Equations (3) can be usefully written in the matrix 
notation 
 
ˆ ( )k= +y Gu Sx                                                       (4) 
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This is the base of the predictive control – new 
unknown values are obtained from actual values. 
 
2.1. Computing of an optimal control 
 
For computing of an optimal control the cost 
function (1) can be written in matrix notation:  
 

( ) ( )ˆ ˆT T
MPCJ = − − +y r M y r u Lu                           (5) 
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[ ]( )1 2( ) nk j diag μ μ μ+ =μ L

[ ]( )1 2( ) mk j diag λ λ λ+ =λ L  

for 0, 1, , pj N= K . 
 
The predictor written by the matrix notation (4) can 
be substituted in the cost function (5) for an optimal 
control computing. We obtain: 
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After simplifying the equation (6) the cost function 
can be written in the following form: 
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The minimum of the cost function MPCJ  (7) can be 
found by making gradient of MPCJ  equal to zero, 
which leads to: 
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( ) ( )11 ( )T T k
−−= − = − + −u H b G MG L G M Sx r     (8) 

 
The result of the equation (8) is the trajectory 
consisting of optimal control inputs, where the first 
m of them are applied on the system and is given by: 
 

( )( ) ( )k k= −u K r Sx                                              (9) 
 
where K  is the first m-rows of the matrix 

( ) 1T T−
+G MG L G M . 

For the dynamic system with the constrains for 
controller output value or the system output value, 
vector of the optimal control u  is calculating by 
Optimization Toolbox function quadprog of 
language Matlab: 

min max( , , , , , )T
CONquadprog=u H b L v U U  

where  
min max≤ ≤U u U  and CON ≤L u v . 

The vectors minU  and maxU  are the column vectors 
those elements are minimal and maximal values of 

( )ku . With using the matrix CONL  and the vector v  
can be defined a system of inequalities that insure so 
constrain conditions will be satisfied [2], [3]. 
 
2.2. Implementation of predictive control 

algorithm based on the state space model to 
Matlab 

 
The algorithm of predictive control for MIMO 

dynamic system was designed with using S-
functions in programmable environment 
Matlab/Simulink. 

The algorithm for the calculating of the control 
input value in k-th step: 

1. reading of the matrices A , B , C  of the linearized 
discrete state space model (2) of dynamic 
system, the reference vector trajectory r and the 
estimated state vector  xe(k), 

2. creating of the weight matrices M  and L , 
3. calculate the matrix of the free response S  and  

the matrix of the force response G , 
4. if required constrains for the values of the control 

input ( )ku , then continue by the step 8, 

5. calculating of the feedback gain of the control 
matrix K , 

6. calculating of the controller output by 
( ) ( ( ))k k= − eu K r Sx , 

7. continue by the step 12, 
8. creating of the vectors minU  and maxU , 

9. calculating Hessian matrix H  and the vector Tb , 

10. min max( , ,[ ],[ ], , )Tquadprog=u H b U U , 

11. ( )ku  consists from the first m-rows of the 
control vector u , 

12. the application of the control signal u(k) on the 
system input. 

 
3. SIMULATION VERIFICATION OF MPC 

ALGORITHM FOR DYNAMIC SYSTEMS 
 

Designed MPC algorithm based on the state 
space model was applicated on simulation models as 
mechanical system-helicopter and hydraulic system-
three tanks with interaction. 

For verification of the predictive algorithm by 
designed control structure on Fig. 1. in language 
Matlab/Simulink was created model of helicopter as 
S-function in the state space for an equilibrium point 
where as non-linear mathematical-physical model of 
helicopter was used model, which is derived in [6]. 
Functional block of MPC controller is included in 
the library PredicLib [3]. 
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reference trajectory
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control ler

y (k)

u(k)
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Fig. 1  The control simulation scheme of the 
predictive control based on state space model of the 

system 

 
The mechanical system-helicopter has two 

degrees of freedom, the rotation of the helicopter 
body with respect to the horizontal axis (pitch angle 
θ ) and the rotation around the vertical axis (yaw 
angle ψ ), which are measured by two sensors. The 
helicopter can move from -170°,170°  in yaw, and 

from -45°,45°  in pitch. 

The inputs to the model are the voltages RU  and 

SU  affecting the main and the rear rotor. Both the 
inputs are constrained between 10V−  and10V .  
For linearization of the nonlinear differential 
equations of the helicopter at an equilibrium point 
by 0θ =  and 0ψ =  the following measurements 
were done at input voltages 1.7REU V= , 

3SEU V= of the steady state of the lab helicopter 
model [6]. At the voltages REU and SEU  in a 
equilibrium point the system parameters are: 
 

57 [ / ]RE rad sω =       [ ]0E radθ =  

0 [ / ]E rad sθω =         100 [ / ]SE rad sω =          (10) 

0 [ ]E radψ =              0 [ / ]E rad sψω =  
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where 
R RE R S SE S
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ω ω ω ω ω ω
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We can find linear-time-invariant (LTI) model 

by linearizing the non-linear differential equations 
from [6] with the values of an equilibrium point and 
system parameters (10) by Jacobian matrices 
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The LTI continuous model of the helicopter can now 
be expressed as 
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where ( )tx , ( )tu , ( )ty  are the state, the input and 
the output vectors.  
The matrices CA , CB  and CC  of the state space 
helicopter model (12) have structure  
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and their elements are defined in [6] and also in 
CyberVirtLab [8]. 

Further the state vector ( )tx  and the input vector 
( )tu  are 

[ ] [ ]1 2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T

R S

T T
R S

t t t t t t t
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= = Δ Δ

x

u
  

where  

( )R tωΔ - deviation from the main rotors angular     
velocity in the equilibrium point 

( )tθ      -   pitch angle, 
( )tθω    -   pitch velocity, 

( )S tωΔ - deviation from the rear rotors angular 
velocity in equilibrium point, 

( )tψ      -  yaw angle, 
( )tψω    -  yaw velocity, 

( )RU tΔ - deviation from the voltage equilibrium 
point for the main rotor, 

( )SU tΔ - deviation from the voltage equilibrium 
point for the rear rotor. 

 
The sensors are measuring the two states ( )tθ  

and ( )tψ . Taking derivative of ( )tθ  and ( )tψ , we 
also have the values for ( )tθω  and ( )tψω . The 
physical value of the measured output will be: 
 

1( )y t - voltage from pitch sensor measuring θ [ ]V , 

2 ( )y t - pitch velocity θω [rad / sec] , 

3 ( )y t - voltage from yaw sensor measuringψ [ ]V , 

4 ( )y t - yaw velocity ψω [rad / sec] . 
 

The discretization of the linearized model of the 
helicopter (12) can be done in the language Matlab 
using function c2d at the chosen sampling time ST . 

Parameters of the simulation for MPC algorithm 
as: 

• the equilibrium point of the helicopter model, 

• the sampling period ST , ( 0.01ST s= ), 

• the prediction horizon PN  for the output of the 
system, (we consider 10PN =  when the 
constrains on the output of the predictive 
controller are  defined), 

• the constrains for controller output value minRU , 

maxRU , minSU , maxSU , 

• the weight coefficients of matrices M  and L  of 
the cost function   MPCJ  (1) 

can be defined by an Internet form [8], which is 
included in CyberVirtLab [7]. 

The results of the tracking of the reference 
trajectories 1 3( ), ( )r t r t  by the system’s outputs 

1 3( ) ( ), ( ) ( )y t t y t tθ ψ= =  using MPC algorithm are 
on Fig. 2, whereas on the output of the system have 
effect disturbance in form of the white noise that 
simulates of the measurement error. 
 

 
 

Fig. 2  The tracking of the reference trajectories 
1 3( ), ( )r t r t  by real outputs of the system 1 3( ), ( )y t y t
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The output of MPC controller – an optimal control 
signals 1 2( ), ( )u t u t  are on Fig. 3. 
 

 
 

Fig. 3  The MPC controller outputs – control signals 
1 2( ), ( )u t u t  

 
The results of MPC strategy with the constrains 

on the control inputs, which are illustrated on Fig. 2 
and Fig. 3 (with added white noise to the output of 
the system) shows on the tracking of the reference 
trajectories when was used discrete linear Kalman 
estimator [3]. 

In a similar way is MPC algorithm applicated on 
hydraulic system of the three tanks with an 
interaction whereas for computing of the predictor 
(4) was used linearized model of MIMO system in 
the state space. Unlike from the mechanical system – 
helicopter, which is unstable with quick dynamics, 
the hydraulic system is stable with slow dynamic. 

The model of the hydraulic system consists from 
three cylindrical tanks with the same cylindrical tank 
bottom area F , which are interconnected at the 
bottom by pipes. The outflows from the tanks are 
controlled by relative open of value iV .  

The outflow from the first tank is the inflow to 
the second one, the picture of the system is showed 
on Internet - CyberVirtLab [9]. 
For changing levels 1( )H t , 2 ( )H t  and 3 ( )H t  holds: 
 

1
1 1 2

2
2 2 3

3
3 3 4

( ) ( ) ( )

( )
( ) ( )

( )
( ) ( )

dH tF M t M t
dt

dH t
F M t M t

dt

dH t
F M t M t

dt

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

= −

= −

= −

                           (13) 

 
From the physics (the part of the hydraulics) is 

known the equation for calculation the mass flow 
between tanks ( ρ  is the density of the liquid): 
 

( )1
1

2 . ( ) ( )
( ) ( )
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i i i
i vi i

i

f g H t H t
M t k f u t

F
i

ρ −
+

−
=

=

       (14) 

where 

vik  is constructing constant of the outlet of the 
cylindrical tank, 

( )( )if u t  is characteristic function of the valve iV , 

1( )M t [ / ]kg s  is the mass inflow to cylindrical tank, 
( )iM t [ / ]kg s  is i-th mass flow between tanks 

through the valve iV , 
( )iH t [ ]m  denotes the water level in the i-th 

cylindrical tank, 
F 2[ ]m  is the cylindrical tank bottom area, 

if
2[ ]m  is the area outflow of the i-th cylindrical 
tank, 

( )iu t [ ]mm  is the rises of the output outlet of the 
cylindrical tank, for 1,...,3i = . 

After inducting the equation (14) to the equation 
(13) whereas we consider, that function ( )( )if u t  
will be linear, we obtain the non-linear differential 
equations (15) describing dynamics of the changing 
levels ( )iH t  in the tanks: 
 

1 1 21 1
1 1

1 1

2 ( ) ( )( ) ( )
( )v

f g H t H tdH t M t
k u t

dt F F
−

= −  
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f g H t H t
k u t

F

−
= −

−
−

            (15) 

 

2 2 33
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( )

v

v
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k u t

dt F

f g H t
k u t

F

−
= −

−

 

 
For the set-point state of the equations (15), that is 
when ( ) / 0idH t dt = , for 1,...,3i =  and by expansion 
to Taylor series for the set-point 

10 20 30 10 20 30[ ]SP = H  H  H  u  u  u   we obtain linearized 
state space model (12),  
where the structure of the matrices CA , CB , CC  is 
 

11 12 11

21 22 23 21 22

32 33 32 33

0 0 0
, 0

0 0

1 0 0
0 1 0 ,
0 0 1

C C

C

A A B
A A A B B

A A B B
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⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A B

C

 

the state vector [ ]1 2 3( ) ( ) , ( ), ( ) Tt H t H t H t= Δ Δ Δx  

and the control vector [ ]1 2 3( ) ( ) ( ) ( ) Tt u t u t u t= Δ Δ Δu . 
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The MPC algorithm was applicated on the 
hydraulic system, which is created as S-function, 
and verified by modified control structure on Fig. 1 
in the language Matlab/Simulink. 

The parameters of the simulation for MPC 
algorithm as: 

• the equilibrium point of the hydraulic system, 

• the sampling period ST , ( 0.2ST s= ), 

• the prediction horizon PN  for the output of the 
system, ( 5PN = ), 

• the weight coefficients of the matrices M  and 
L , of the cost function   MPCJ  (1) 

can be defined by an Internet form [9], which is 
included in CyberVirtLab [7]. 

The presentation of the results of MPC strategy 
is illustrated on Fig. 4 and Fig. 5.  

The plots on Fig. 4 compare the reference output 
of the system ( )ir t  and the actual output of the 
closed loop system ( )iH tΔ . 
 

 

 

 
 

Fig. 4  The graphic representation of the reference 
outputs ( )ir t  and the real outputs of the hydraulic 

system ( )iH tΔ  

The plot in Fig.5 shows the results of MPC 
algorithm – an optimal control signals 1( )u tΔ , 2( )u tΔ , 

3( )u tΔ . 
 

 
 
Fig. 5  The MPC controller outputs – control signals 

1( )u tΔ , 2( )u tΔ , 3( )u tΔ  

 
4. CONCLUSION 
 

This paper presents the approach of an internet 
verification MPC algorithm based on the state space 
model of the dynamical system (mechanical system -
helicopter and hydraulic system) by the simulation 
schemes in language Matlab/Simulink using the 
technology Matlab Web Server. 

These created an internet applications can be 
used on the exercises of courses as Theory Optimal 
and Adaptive Systems, Control and Artificial 
Intelligence and Control and Process Visualization, 
which are lectured on the Department of Cybernetics 
and Artificial Intelligence of Faculty of Electrical 
Engineering and Informatics, Technical University 
of Košice. 

An internet applications enable to simplify the 
usage of designed MPC algorithms for the testing 
their properties at the various dynamics of MIMO 
non-linear systems without the proper installation 
simulation language Matlab/Simulink on the client’s 
PC. 

The authors of this paper have attempted to an 
introduce the technology Matlab Web Server as 
suitable means of motivating students within the 
courses such as Control Theory and Visualization by 
the simulation verification of an optimal algorithm 
design in Matlab/Simulink environment. 
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