TECHNICKÁ UNIVERZITA V KOŠICIACH FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Zostavenie systému tlmenia automobilu v prostredí MATLAB/Simulink a SimMechanics Tutoriál (Príloha D)

Študijný program:	Inteligentné systémy
Študijný odbor:	Kybernetika
Školiace pracovisko:	Katedra kybernetiky a umelej inteligencie
Školiteľ:	doc. Ing. Anna Jadlovská, PhD.
Konzultant:	Ing. Matej Oravec

2016

Miroslav Murín

Úlohy

- 1. Zostaviť matematický model tlmenia automobilu
- Vytvoriť simulačný model v prostredí MATLAB/Simulink a pomocou funkcií toolboxu SimMechanics. Porovnať postupy zostavenia modelov.
- 3. Simulovať odozvy systému na rôzne typové signály

1. Úvod a zostavenie matematického modelu

Systém zobrazený na obrázku nižšie predstavuje aproximáciu reálneho tlmenia kolies automobilu. Uvažovaný systém môžeme popísať pomocou troch základných elementov mechanických systémov, ktorými sú: hmotný bod, tlmič a pružina.

Sústava sa skladá z dvoch hmotných bodov pričom prvý (s hmotnosťou m_1), predstavuje štvrtinovú váhu automobilu a druhý (s hmotnosťou m_2), predstavuje hmotnosť kolesa a nápravy. Medzi jednotlivými hmotnými bodmi sa nachádza tlmič s koeficientom viskózneho tlmenia *b* a pružina s konštantou pružnosti k_1 . Tieto dva elementy spolu reprezentujú zjednodušený reálný systém pérovania kolies.

Konštanta k_2 odzrkadľuje tuhosť pružnosti samotnej pneumatiky, ktorá priamo súvisí so vstupom. Vstupom do systému je nerovnosť povrchu vozovky, tým pádom sa systém uvedie do pohybu vždy, keď automobil prejde nerovnosťou na vozovke.

Systém tlmenia automobilu a znázornenie pôsobenia síl na hmotné body

Parametre:		
	$m_{ m 1}-$ štvrtinová hmotnosť automobilu	[<i>kg</i>]
	$m_{ m 2}$ — hmotnosť kolesa a nápravy	[<i>kg</i>]
	$k_i -$ koeficient pružnosti i-tej pružiny $i = 1,2$	$[Nm^{-1}]$
	b – koeficient viskózneho tlmenia	$[Nms^{-1}]$
	$g - { m gravitačné zrýchlenie}$	$[ms^{-2}]$
Fyzikálne vel	ičiny:	
	$y_1(t), y_2(t)$ — polohy jednotlivých hm. bodov	[m]
	$\dot{y}_1(t),\dot{y}_2(t)-$ rýchlosti jednotlivých hm. bodov	$[ms^{-1}]$
	$\ddot{y}_1(t), \ddot{y}_2(t) -$ zrýchlenia jednotlivých hm. bodov	$[ms^{-2}]$
	$F_{k1}(t)$, $F_{k2}(t)$ — sila prenášaná pružinami	[N]
	$F_b(t)$ — sila prenášaná tlmičom	[N]
	F_{g1}, F_{g2} — gravitačná sila pôsobiaca na telesá	[<i>N</i>]
	u(t) – vstupná nerovnosť vozovky	[<i>m</i>]

Tabuľka parametrov systému "tlmič automobilu"

Pre pôsobiace sily na teleso platí:

$$F_{k1} = k_1(y_1(t) - y_2(t))$$

$$F_{k2} = k_2(u(t) - y_2(t))$$

$$F_{g1} = m_1 g$$

$$F_{g2} = m_2 g$$

$$F_b = b(v_1(t) - v_2(t)) = b(\dot{y}_1(t) - \dot{y}_2(t))$$
(1)

Postup pri modelovaní je nasledovný. Vychádzame z metódy uvoľňovania, ktorá je založená na základe platnosti druhého Newtonovho zákona. Platí teda rovnosť $ma = \sum_i F_i$. Rozpísaním tejto rovnosti na sústavu rovníc dostávame:

$$m_1 a = \sum_i F_i$$

$$m_2 a = \sum_i F_i$$
(2)

Sumy síl z uvedenej sústavy rovníc (2) rozpíšeme na parciálné pôsobiace sily podľa obrázku v úvode a nahradíme priemerné zrýchlenie *a*, okamžitým vyjadreným ako druhá derivácia polohy v čase $\frac{d^2y}{dt^2}$.

$$m_1 \ddot{y}_1(t) = -F_b(t) - F_{k1}(t) - F_{g1}$$

$$m_2 \ddot{y}_2(t) = F_b(t) + F_{k1}(t) + F_{k2}(t) - F_{g2}$$
(3)

Po dosadení jednotlivých síl z rovníc (1) dostávame:

$$m_1 \ddot{y}_1(t) = -b(\dot{y}_1(t) - \dot{y}_2(t)) - k_1(y_1(t) - y_2(t)) - m_1 g$$

$$m_2 \ddot{y}_2(t) = b(\dot{y}_1(t) - \dot{y}_2(t)) + k_1(y_1(t) - y_2(t)) + k_2(u(t) - y_2(t) - m_2 g$$
(4)

Odvodenie matematického modelu mierne komplikuje prítomnosť gravitačnej sily. Následkom jej pôsobenia je posunutie systému do rovnovžného stavu, ktorý budeme ďalej vyšetrovať. Pre výpočet rovnovažných stavov sú derivácie polohy rovné nule, platí teda:

$$-k_1(y_{10} - y_{20}) - m_1g = 0$$

$$k_1(y_{10} - y_{20}) + k_2(-y_{20}) - m_2g = 0$$
(5)

Odkiaľ dostávame:

$$y_{10} = -\frac{m_2 g}{k_2} - \frac{m_1 g (k_1 + k_2)}{k_1 k_2}$$

$$y_{20} = -\frac{m_1 g}{k_2} - \frac{m_2 g}{k_2}$$
(6)

Definujeme si súradnicový systém x_1 a x_2 vo vypočítanom rovnovažnom stave, ktorý vznikol pôsobením gravitačnej sily na hmotné body systému. Preto od pôvodného súradnicového systému odčítame známe hodnoty veľkosti stlacěnia (y_{10} a y_{20}), kde potom definujeme nový súradnicový systém. Keďže gravitačná sila ma opačný smer pôsobenia, ako smer pohybu, telesá systému vďaka jej pôsobeniu prirodzene klesnú.

$$\begin{aligned} x_1 &= y_1 - y_{10} &\Rightarrow y_1 = x_1 + y_{10} \\ x_2 &= y_2 - y_{20} &\Rightarrow y_2 = x_2 + y_{20} \end{aligned}$$
 (7)

Pre derivácie platí $\dot{y}_1 = \dot{x}_1$, $\ddot{y}_1 = \ddot{x}_1$, $\dot{y}_2 = \dot{x}_2$, $\ddot{y}_2 = \ddot{x}_2$. Dosadením vzťahov (7) do pohybových rovníc (4) a následnou úpravou dostávame:

$$= 0$$

$$m_{1}\ddot{x}_{1}(t) = -b(\dot{x}_{1}(t) - \dot{x}_{2}(t)) - k_{1}(x_{1}(t) - x_{2}(t)) + k_{1}y_{20} - k_{1}y_{10} - m_{1}g$$

$$m_{2}\ddot{x}_{2}(t) = b(\dot{x}_{1}(t) - \dot{x}_{2}(t)) + k_{1}(x_{1}(t) - x_{2}(t)) + k_{2}(u(t) - x_{2}(t))$$

$$(8)$$

$$(8)$$

$$(9)$$

Po vykrátení hmotnosťami m_1 a m_2 , dostávame vyjadrenia pre zrýchlenie jednotlivých hmotných bodov, čím sme dospeli k výslednym pohybovým rovniciam nášho systému.

$$\ddot{x}_{1}(t) = -\frac{b}{m_{1}} (\dot{x}_{1}(t) - \dot{x}_{2}(t)) - \frac{k_{1}}{m_{1}} (x_{1}(t) - x_{2}(t))$$

$$\ddot{x}_{2}(t) = \frac{b}{m_{2}} (\dot{x}_{1}(t) - \dot{x}_{2}(t)) + \frac{k_{1}}{m_{2}} (x_{1}(t) - x_{2}(t)) + \frac{k_{2}}{m_{2}} (u(t) - x_{2}(t))$$
(9)

Odvodený matematický model sústavy môžeme využiť na simulovanie jeho dynamických vlastností. Pohybové rovnice budeme v nasledujúcej kapitole implementovať do simulačného prostredia MATLAB/Simulink. Pre implementáciu ich prepíšeme do substitučného kanonického tvaru. Pre stavy systému zaveďme substitúcie:

$$x_1 = q_1$$
 $x_2 = q_3$
 $\dot{x}_1 = q_2$ $\dot{x}_2 = q_4$
(10)

Pomocou tejto substitúcie môžeme prepísať dve rovnice druhého rádu na štyri rovnice prvého rádu.

$$x_{1} = q_{1}$$

$$\dot{x}_{1} = \dot{q}_{1} = q_{2}$$

$$\ddot{x}_{1} = \dot{q}_{2} = -\frac{b}{m_{1}}(q_{2} - q_{4}) - \frac{k_{1}}{m_{1}}(q_{1} - q_{3})$$

$$x_{2} = q_{3}$$

$$\dot{x}_{2} = \dot{q}_{3} = q_{4}$$

$$\ddot{x}_{2} = \dot{q}_{4} = \frac{b}{m_{2}}(q_{2} - q_{4}) + \frac{k_{1}}{m_{2}}(q_{1} - q_{3}) + \frac{k_{2}}{m_{2}}(u - q_{3})$$
(11)

S takto definovaným systémom môžeme pristúpiť k zostaveniu simulačného modelu.

2. Implementácia matematického modelu tlmenia automobilu do prostredia MATLAB/Simulink

Zostavovať simulačný model budeme *na základe matematického modelu dynamického systému* (11) z predošlej kapitoly, pričom riešenie je založemé na *postupnom znižovaní rádu derivácií*. Matematický model teda určuje charakter zapojenia jednotlivých blokov do schémy. Nasledujúca tabuľka sumarizuje všetky bloky použité pri implementácii systému do tohto prostredia.

Blok Simulinku	Popis	Označenie bloku
Integrator	Integrátor numericky integruje hodnoty vstupného signálu v závislosti na čase. Je nutný k riešeniu diferenciálnych rovníc, popisujúich dynamické správanie systému.	$\frac{1}{s}$
Sum	Sumátor vykonáva sčítanie/odčítanie jeho vstupov. V našej implementácii ho použijeme pre zápis súčtu síl pôsobiacich na teleso a realizáciu rozdielu medzi stavmi.	X++ Sum
Gain	Gain násobí (zosilňuje) vstupnú hodnotu zadanú v parametri bloku, ktorá môže byť konštantou, alebo vektorom.	Gain
Mux	Mux spája jednotlivé signály privedené na jeho vstup do jedného viacrozmerného signálu. V simulačnom modely ho používame pre spojenie signálov rovnakej fyzikálnej podstaty (polohy, rýchlosti, atď).	Mux
In, Out	In predstavuje vstup signálu do subsystému. Out predstavuje výstup signálu zo subsystému.	
Scope	Scope graficky zaznamenáva privedený signál v čase. V simulačných modeloch často využívame jeho funcionalitu ukladania hodnôt do definovanej premennej v pracovnom priestore MATLABu.	Scope

Postup zostavenia simulačného modelu

✓ Vytvorenie nového modelu

Otvoríme si novú schému Simulink a pridáme do nej 2 sumátory. Jednotlivé sumátory v našom modeli reprezentujú sumy síl pôsobiacich na hmotné body. Pri implementovaní sa teda riadime odvodenými rovnicami (11), pričom do parametra bloku sumátora zadávame znamienka jednotlivých síl z rovníc platných pre zrýchlenie telesa. Rozklikneme si sumátory a z možnosti *"Icon shape"* si zvolíme *"rectangular"*. Pre prvý sumátor do atribútu *"List of sings"* zadáme *"--"* a pre druhý *"+++"*.

Výstupy blokov sumátora predstavujú zrýchlenia hmotných bodov. Je známe, že integrovaním zrýchlenia vypočítame rýchlosť hmotných bodov.

Pridanie integrátorov do schémy a vytvorenie potrebných stavov

Z toho dôvodu je ďalším krokom pridanie *integrátorov* do schémy. Ich vstupmi sú zrýchlenia hm. bodov a výstupmi rýchlosti. Ďalším integrovaním signálov dostávame polohy v čase. Predpokladáme, že hmotné body sústavy sa nachádzajú v čase t=0 v rovnovažných stavoch, tým pádom počiatočné podmienky integrátorov sú rovné nule.

Po tomto kroku náš simulačný model obsahuje všetky stavy systému potrebné k implementácii.

Vytvoríme si rozdiely stavov, ktoré sú súčasťou niektorých pôsobiacich síl pohybových rovníc. Konkrétne je to rozdiel $(\dot{x}_1(t) - \dot{x}_2(t))$ pre silu tlmenia, $(x_1(t) - x_2(t))$ pre silu prvej pružiny a $(u(t) - x_2(t))$ pre silu druhej pružiny. Pridáme si ďalšie tri sumátory z knižníc Simulinku, ktorým nastavíme parameter *"List of sings"* na *"+-"*. Vstupy sumátorov spojíme so stavmi a vstupom systému v zmysle matematického modelu.

Zosilnenie signálov v zmysle rovníc

Pre získanie jednotlivých síl musíme vytvoriť súčin signálov a rozdielov signálov s im prisluchajúcimi zosilneniami. Pridáme teda bloky *Gain* do simulačnej schémy a nastavíme ich parametre "*Gain*" na príslušné hodnoty.

Vytvorenie subsystému a masky systému

Tým je simulačný model systému tlmenia automobilu kompletný. Pre prehľadnosť môžeme celú schému zakomponovať do *subsystému* označeného prerušovanou čiarou. Predtým ale ešte pridáme dva multiplexory, ktoré slúžia na spojenie signálov polôh hm. bodov a rýchlostí.

K celému simulačnému modelu pridáme vstupy a bloky na vykreslenie výsledkov.

V blokoch na vykreslenie je možné pod záložkou *"History"* zašktrnúť možnosť *"Save data to workspace"* pre uloženie dát do pracovného prostredia MATLAB a následnú prácu s nimi. Dáta je možné ukladať vo viacerých formátoch so zvoleným názvom zadaným do textboxu *"Variable name"*.

Vzhľad *subsystému* je možné upravovať pridaním masky. Maska ponúka možnosť zadávania parametrov systému pri dvojkliknutí na subsystém. Alebo zmenu vzhľadu celého subsystému nasledovne. Najprv pridáme samotnú masku pravým kliknutím na subsystém, vyhľadáme možnosť *"Mask"* a klikneme na *"Create Mask"*.

Zobrazí sa nám okno *"Mask Editora"*, kde v záložke *"Icon & Ports"* vložíme do texboxu *"Icon drawing commands"* nasledujúci príkaz: *image(imread('auto.jpg'))*, pričom súbor s obrázkom je v rovnakom adresári ako simulačný model. Je možné načítať obrázok aj z iného adresára, ale v tom prípade sa musí zadať cesta k súboru.

3. Implementácia matematického modelu tlmenia automobilu

s využitím toolboxu SimMechanics

Zásadným rozdielom pri modelovaní systémov pomocou toolboxu SimMechanics je, že *nebudeme výchádzať z diferenciálnych rovníc systému*. Je dôležité si uvedomiť, že pri implementácii modelu do tohto prostredia sa *vychádza z geometrického usporiadania telies* a z jednotlivých typov väzieb medzi nimi. Veľmi zjednodušene sa dá povedať, že simulačný model vytvárame pomocou dokonale tuhých telies na základe ich kinematickej štruktúry.

Najväčším prínosom k modelovaniu v tomto prostedí je *automatická tvorba matematického modelu na základe definovaných telies a spojení medzi nimi.*

Model v SimMechanics je podobne ako model v Simulinku tvorený blokmi. Narozdiel od Simulinku sú *jednotlivé bloky spájané fyzikálnými signálmi*, nie reprezentatívnými signálmi Simulinku. Prepojenie je možné realizovať konvertormi fyzického signálu na signál Simulinku a opačne. V implementácii s využívame nasledovné funkcie toolboxu SimMechanics.

Blok SimMechanics	Popis	Označenie bloku
World Frame	World Frame predstavuje vonkajšie prostredie mechanického systému. Je to referenčný bod v priestore, ktorého poloha a orientácia je preddefinovaná a nie je zavislá od žiadneho iného bloku modelu.	World Frame
Mechanism Configuration	Mechanism Configuration poskytuje mechanické a simulačné parametre navzájom prepojeným blokom SimMechanics. Medzi voliteľné parametre patrí gravitačné zrýchlenie a linearizačný krok pri výpočte parciálnych derivácií počas linearizácie.	Mechanism Configuration
Solver Configuration	Solver configuration špecifikuje typ matematického riešiteľa a iné nastavenia akým je napr. doba vzorkovania. Každá topologicky odlišná schéma v SimMechanics si vyžaduje práve jeden takýto blok.	f(x) = 0 Solver Configuration
Solid	Blok Solid predstavuje dokonale tuhé teleso. Blok umožňuje meniť tvar, ťažisko a farbu telesa. Geometrické parametre bloku zahŕňajú <i>tvar a veľkosť.</i> SimMechanics dovoľuje importovanie vlastného tvaru z externého STL, alebo STEP súboru. Pri voľbe výpočtu ťažiska telesa máme k dispozícii 3 možnosti: <i>Calculate from Geometry, Point Mass, Custom.</i> Posledným parametrom bloku sú grafické vlastnosti. Umožnujú meniť farbu, priehľadnosť a mnoho iných vlastností	Solid

Rigid Transform	Rigid transform predstavuje časovo nemennú transformáciu medzi dvoma súradnicovými systémami. Transformácia je myslená v zmysle rotácie a translácie následujúcého súradnicového systému vzhľadom k základnému. Blok umožňuje realizovať rotáciu a transláciu viacerými spôsobmi.	Rigid Transform
Prismatic Joint	Prismatic Joint reprezentuje translačnú väzbu medzi telesami s jedným stupňom voľnosti v smere osi Z. Samotný blok obsahuje veľa funkcionalít. Je v ňom možné zadať koeficienty pružinosti a tlmenia. Externé silny budiace systém sa pripájajú tiež na tento blok a nastavujú pomocou možností parametra Actuation. Snímanie polohy, rýchlosti, zrýchlenia, pôosobiacej sily na teleso sa realizuje tiež priamo v možnostiach parametra Sensing.	Pris matic Joint
Simulink-PS Converter, PS-Simulink Converter	Simulink-PS Converter prevadzá vstupný signál Simulinku do fyzického signálu. Je potrebný na pripojenie klasických blokov Simulinku k fyzikálnej časti modelu. PS-Simulink Converter pracuje na opačnom princípe.	Simulink-PS PS-Simulink Converter Converter

Postup zostavenia simulačného modelu

Vytvorenie nového modelu

Pre vytvorenie nového modelu v SimMechanics postačí zadať príkaz *smnew* do príkazového riadku MATLABu. Po vykonaní tohto príkazu sa nám objaví základná schéma s blokmi a knižnica blokov tooboxu SimMechanics.

Môžme si všimnúť, že bloky *Solver Configuration, World Frame* a *Mechanism Configuration* sú vždy v každej schéme nutne prepojené.

Implementácia vychádza z bloku *World Frame*, ktorý predstavuje základný invariantný súradnicový systém. V Bloku *Mechanism Configuration* nastavíme gravitáciu pod položkou *"Uniform Gravity"* na hodnotu *"None"*. Za prítomnosti gravitáčného zrýchlenia by sme sa po istom čase dostali do rovnovažného stavu, ktorý sme si odvodili v rovniciach, kde sme si vytvorili nový

súradnicový systém. Takže nie je nutné ho viac uvažovať. Bloky *World Frame* a *Solver Configuration* nechávame na defaultných hodnotách.

 Image: Non-optimized configuration
 Image: Non-optimized configuration

 Image: Non-optimized configurat

✓ Pridanie ďalších blokov predstavujúcich telesá sústavy a väzby

Do schémy pridáme ďalšie bloky s ktorými budeme implementáciu realizovať. Potrebovať budeme dve translačné väzby *Prismatic Joint* (nájsť ju môžeme v knižnici v blokoch *Joints*), ďalšie dve telesá *Solid* (nachádzajúce sa medzi blokmi *Body Elements*). Jednotlivé bloky *Solid* predstavujú telesá sústavy.

Nastavenie vlastností hm. bodov

Prvý Solid blok reprezentuje vozovku (slúži len na ilustráciu, nezasahuje priamo do dynamických vlastností sústavy). Dvojkliknutím nastavíme jeho vlastnosti nasledovne:

🗏 Geometry		
Shape	Brick	•
Dimensions	[1 1 0.02]	m 👻
🗉 Inertia		
🗉 Graphic		
Туре	From Geometry	•
Visual Properties	Simple	-
Color	[0.1 0.1 0.1]	
Opacity	1.0	

> Druhý Solid blok reprezentuje koleso a nápravu. Jeho vlastnosti sú nastavené takto:

🗏 Geometry		
Shape	Cylinder	-
Radius	0.25	m 👻
Length	0.2	m 👻
🗏 Inertia		
Туре	Point Mass	•
Mass	m2 kg	
🗏 Graphic		
Туре	From Geometry	•
Visual Properties	Simple	-
Color	[0.2 0.2 0.2]	
Opacity	1.0	

■ Geometry			
Shape	Brick	•	
Dimensions	[0.5 0.5 0.2]	m 👻	
🗏 Inertia			
Туре	Point Mass	•	
Mass	m1	kg 👻	
🗏 Graphic			
Туре	From Geometry	-	
Visual Properties	Simple	•	
Color	[0.4 0.0 0.0]		
Opacity	1.0		

> Tretí Solid blok reprezentuje štvrtinovú váhu automobilu. Jeho vlastnosti sú dané takto:

✓ Vytvorenie subsystémov a posunutie

Ku všetkým blokom *Solid* je teraz nutné definovať posunutia ktorými transformujeme jednotlivé pripojenia na vrchnú a spodnú stranu objektu z ťažiska. Situáciu zobrazuje nasledovný obrázok.

K posunutiu a rotácii súradnicového systému v SimMechanics slúži blok Rigid transform.

Podsystém *Vozovka (podľa obrázka)* a *Koleso* obsahujú dve translácie a *Auto* jednu, keďže za neho nepripájame nič. V prípade *Kolesa* využijeme aj možnosť rotácie osi v bloku *Rigid Transform*. Jednotlivé translácie odpovedajú polovičnej veľkosti uvažovaného objektu. Z toho dôvodu je nutné ich mať dve, čo znázorňuje aj ilustračný obrázok *Subsystém Vozovka*.

FEI

✓ Nastavenie translácií a rotácií súradnicového systému

Subsystém Vozovka

Rotation			
Method	None		-
Translation			
Method	Standard A	ds	-
Axis	+Z		-
Offset	0.01	m	•

> Subsystém Koleso

V prípade podsystému *Koleso* je v nastavení *Rigid Transform* nutné okrem translačnej transformácie vykonať aj rotačnú, keďže koleso je vytvorené v tvare valca, ktorého podstava je umiestnená v rovine *x*,*y*.

Rotation			
Method	Standard Ax	is	-
Axis	+X		-
Angle	90	deg	-
Translation			
Method	Standard Ax	is	-
Axis	+Z		-
Offset	0.25	m	-

Prirodzene ani druhý *Rigid Transform* subsystému neslúži len na posunutie súradnicového systému, ale ho aj otáča späť. Parameter *"Rotation"* je nastavený na *"-X"* o rovnaký uhol, ako predchádzajúci transformačný blok (90 stupňov).

Subsystém Auto

Rotation		
Method	None	•
Translation		
Method	Standard Axis	•
Axis	+Z	-
Offset	0.1	m 👻

✓ Prepojenie schémy a nastavenie väzieb

Ďalším krokom v modelovaní je spojenie subsystémov väzbami. Bloky *translačného spojenia* (*Prismatic Joint*) slúžia k samotnej realizácii pohybu hmotných bodov. V nich sa okrem iného definujú jednotlivé konštanty pružnosti, či tlmenia. V súlade s kinematickou štruktúrou zobrazenou na obrázku na začiatku modelovania mat. modelu, prepojíme jednotlivé objekty schémy, čím dospejeme k nasledujúcemu obrázku.

Pričom parametre bloku Translačné spojenie1, sú nastavené:

Z Prismatic Primitive (Pz)			
Internal Mechanics			
Equilibrium Posi	0	m 👻	
Spring Stiffness	k2	N/m 👻	
Damping Coeffi	0	N/(m/s) 🚽	
Actuation			
Force	Provided by Input	-	
Motion	Automatically Computed 🛛 👻		
Sensing			
Position	V		
Velocity	V		
Acceleration			
Actuator Force			
Composite Force/Torque Sensing			

Ako vidíme blok zahŕňa koeficient pružnosti pneumatiky, umožňuje privádzať vstupnú silu *"Actuation"* z ktorej automaticky vypočíta pohyb kolesa a zaznamenáva *"Sensing"* jeho polohu a rýchlosť.

Parametre bloku Translačné spojenie2:

Z Prismatic Primitive	(Pz)			
State Targets				
Internal Mechanics				
Equilibrium Posi	0	m 👻		
Spring Stiffness	k1	N/m 👻		
Damping Coeffi	b	N/(m/s) 🗸		
Actuation				
Sensing				
Position	V			
Velocity	V			
Acceleration				
Actuator Force				
Composite Force/Torque Sensing				

✓ Pripojenie vstupných a výstupných blokov

Vstupom do systému sú rovnaké nerovnosti, ako v simulačnom modeli Simulinku. Rozdielom je nutnosť ich konvertovania na fyzický signál pomocou bloku *Simulink-PS Converter*.

V neposlednom rade schéma obsahuje blok *Posunutie,* ktorý tvorí jednoduchú medzeru medzi telesami kolesa a auta.

Na prevod týchto signálov na klasické Simulinku, nám slúži *Subsystém PS-Simulink Converter*. Je vytvorený z dvoch dôvodov. Jedným je úhľadnosť schémy a tým hlavným, že sa v ňom vykonáva aj operácia sčítania signálov. Keďže SimMechanics vykresľuje stavy auta relatívne voči kolesu, je nutné pričítať k stavom auta stavy kolesa. Tým pádom výstupom na *Scope* sú absolútne stavy telies, zhodné s výsledkami z prostredia Simulink.

Tým je simulačný model kompletný. S preddefinovanými parametrami v MATLABe sa dá otvoriť okno *Mechanics Explorers* pomocou skratky CTL+D. Predstavuje vizualizáciu simulácie a umožnuje

odkontrolovať si systém. SimMechanics teda poskytuje vizualizáciu celého priebehu simulácie. V prípade, že sme modelovali správne sa nám po jeho spustení naskytne nasledujúci obraz odpovedajúci obrázku vpravo.

Úprava vzhľadu schémy a simulácie (nepovinné)

Pre úpravu vzhľadu schémy a vizualizácie môžeme postupovať takto :

Vzhľad schémy môžeme opäť vylepšiť pomocou masky, kde môžeme pridať obrázky jednotlivých častí schémy.

Vzhľad simulácie môžeme vylepšiť pomocou importovania vlastných STL, STEP súborov nakreslených v CAD nástrojoch. Importovanie sa realizuje v blokoch Solid.

E Geometry				
Shape	From File	From File 👻		
File Type	STEP	STEP 👻		
File Name	SolidWorksfi	SolidWorksfiles\Auto.STEP		
🗏 Inertia				
Туре	Point Mass	Point Mass 👻		
Mass	m1		kg -	
🗷 Graphic				

Po výmene všetkých jednoduchých tvarov telies simulačnej schémy vyzerá simulácia nasledovne.

4. Simulácia systému na rôzne typové signály

Pred simuláciou v oboch simulačných schémach nastavíme solver na *ode45* s maximálnym krokom 0.05 a dobu simulácie na 10 sekúnd. Vo všetkých simuláciách sú počiatočné podmienky rovné nule.

Parametre simulačných modelov:

Parametre:

$$m_1 = 300 \ [kg]$$
 $m_2 = 100 \ [kg]$
 $k_1 = 8000 \ [Nm^{-1}],$ $k_2 = 10000 \ [Nm^{-1}]$
 $b = 3000 \ [Nms^{-1}]$

> Odozva systému na signál pulzu v sim. modeli Simulinku

<u>Vlastnosti vstupného signálu</u>: amplitúda 0.05 [*m*], perióda o dĺžke 5 [*s*] a šírka pulzu 0.5 [*s*].

> Odozva systému na signál pulzu v sim. modeli toolboxu SimMechanics

<u>Vlastnosti vstupného signálu</u>: amplitúda 0.05 [*m*], perióda o dĺžke 5 [*s*] a šírka pulzu 0.5 [*s*].

Poďla očákávania sú výstupy SimMechanics a Simulink identické, čo dokazuje korektnosť pri modelovaní. Z toho dôvodu ďalej uvádzame časové charakteristiky na vstupné signály len raz.

> Odozva systému na signál sínusoidy v sim. modeli toolboxu SimMechanics

Vlastnosti vstupného signálu: amplitúda 0.1 [*m*], frekvencia 2 [*rad/s*].

Odozva systému na signál opakujúcej sa sekvencie v sim. modeli toolboxu SimMechanics

Vlastnosti vstupného signálu: amplitúda 0.05 [m], perióda 0.75 [s].

- > Odozva systému na signál zväčšujúceho sa pulzu v sim. modeli toolboxu SimMechanics
 - > <u>Vlastnosti vstupného signálu</u>: min. amplitúda 0.02 [m], max. amplitúda 0.1 [m].

