
Optimization-Based Control

Richard M. Murray
Control and Dynamical Systems
California Institute of Technology

DRAFT v1.4a, 28 January 2008
c© California Institute of Technology

All rights reserved.

This manuscript is for review purposes only and may not be reproduced, in whole or in
part, without written consent from the author.

Preface

These notes serve as a supplement to Feedback Systems by Åström and Mur-
ray and expand on some of the topics introduced there. Our focus is on the
use of optimization-based methods for control, including optimal control
theory, receding horizon control and Kalman filtering. Each chapter is in-
tended to be a standalone reference for advanced topics that are introduced
in Feedback Systems.

Contents

Chapter 1. Trajectory Generation and Tracking 1

1.1 Two Degree of Freedom Design 1

1.2 Trajectory Tracking and Gain Scheduling 3

1.3 Trajectory Generation and Differential Flatness 7

1.4 Further Reading 13

Chapter 2. Optimal Control 17

2.1 Review: Optimization 17

2.2 Optimal Control of Systems 20

2.3 Examples 23

2.4 Linear Quadratic Regulators 25

2.5 Choosing LQR weights 28

2.6 Advanced Topics 30

2.7 Further Reading 31

Chapter 3. Receding Horizon Control 38

3.1 Optimization-Based Control 38

3.2 Receding Horizon Control with CLF Terminal Cost 45

3.3 Receding Horizon Control Using Differential Flatness 46

3.4 Implementation on the Caltech Ducted Fan 50

3.5 Further Reading 58

Bibliography 60

Chapter 1
Trajectory Generation and Tracking

This set of notes expands on Section 7.5 of Feedback Systems by Åström and
Murray (ÅM08), which introduces the use of feedforward compensation in
control system design. We begin with a review of the two degree of freedom
design approach and then focus on the problem of generating feasible tra-
jectories for a (nonlinear) control system. We make use of the concept of
differential flatness as a tool for generating feasible trajectories.

Prerequisites. Readers should be familiar with modeling of input/output
control systems using differential equations, linearization of a system around
an equilibrium point and state space control of linear systems, including
reachability and eigenvalue assignment. Although this material supplements
concepts introduced in Chapter 7 of ÅM08, no knowledge of observers is
required.

1.1 Two Degree of Freedom Design

A large class of control problems consist of planning and following a trajec-
tory in the presence of noise and uncertainty. Examples include autonomous
vehicles manuevering in city streets, mobile robots performing tasks on fac-
tor floors (or other planets), manufacturing systems that regulate the flow
of parts and materials through a plant or factory, and supply chain manage-
ment systems that balance orders and inventories across an enterprise. All
of these systems are highly nonlinear and demand accurate performance.

To control such systems, we make use of the notion of two degree of free-
dom controller design. This is a standard technique in linear control theory
that separates a controller into a feedforward compensator and a feedback
compensator. The feedforward compensator generates the nominal input
required to track a given reference trajectory. The feedback compensator
corrects for errors between the desired and actual trajectories. This is shown
schematically in Figure 1.1.

In a nonlinear setting, two degree of freedom controller design decouples
the trajectory generation and asymptotic tracking problems. Given a de-
sired output trajectory, we first construct a state space trajectory xd and
a nominal input ud that satisfy the equations of motion. The error system
can then be written as a time-varying control system in terms of the er-
ror, e = x − xd. Under the assumption that that tracking error remains

1.1. TWO DEGREE OF FREEDOM DESIGN 2

Generation

∆

uff

xd

ref

ufb

Process

P

outputnoise

Feedback

Compensation

Trajectory

Figure 1.1: Two degree of freedom controller design for a process P with uncer-
tainty ∆. The controller consists of a trajectory generator and feedback controller.
The trajectory generation subsystem computes a feedforward command ud along
with the desired state xd. The state feedback controller uses the measured (or
estimated) state and desired state to compute a corrective input ufb. Uncertainty
is represented by the block ∆, representing unmodeled dynamics, as well as dis-
turbances and noise.

small, we can linearize this time-varying system about e = 0 and stabilize
the e = 0 state. (Note: in ÅM08 the notation uff was used for the desired
(feedforward) input. We use ud here to match the desired state xd.)

More formally, we assume that our process dynamics can be described
by a nonlinear differential equation of the form

ẋ = f(x, u) x ∈ R
n, u ∈ R

p,

y = h(x, u) y ∈ R
q,

(1.1)

where x is the system state, u is a vector of inputs and f is a smooth function
describing the dynamics of the process. The smooth function h describes
the output y that we wish to control. We are particularly interested in the
class of control problems in which we wish to track a time-varying reference
trajectory r(t), called the trajectory tracking problem. In particular, we wish
to find a control law u = α(x, r(·)) such that

lim
t→∞

(
y(t) − r(t)

)
= 0.

We use the notation r(·) to indicate that the control law can depend not
only on the reference signal r(t) but also derivatives of the reference signal.

A feasible trajectory for the system (1.1) is a pair (xd(t), ud(t)) that sat-
isfies the differential equation and generates the desired trajectory:

ẋd = f(xd, ud) r(t) = h(xd, ud).

The problem of finding a feasible trajectory for a system is called the tra-
jectory generation problem, with xd representing the desired state for the

1.2. TRAJECTORY TRACKING AND GAIN SCHEDULING 3

(nominal) system and ud representing the desired input or the feedforward
control. If we can find a feasible trajectory for the system, we can search
for controllers of the form u = α(x, xd, ud) that track the desired reference
trajectory.

In many applications, it is possible to attach a cost function to trajec-
tories that describe how well they balance trajectory tracking with other
factors, such as the magnitude of the inputs required. In such applications,
it is natural to ask that we find the optimal controller. We can again use the
two degree of freedom paradigm with an optimal control computation for
generating the feasible trajectory. This subject is examined in more detail
in Chapter 2. In addition, we can take the extra step of updating the gen-
erated trajectory based on the current state of the system. This additional
feedback path is denoted by a dashed line in Figure 1.1 and allows the use of
so-called receding!horizon!control techniques: a (optimal) feasible trajectory
is computed from the current position to the desired position over a finite
time T horizon, used for a short period of time δ < T , and then recomputed
based on the new position. Receding horizon control is described in more
detail in Chapter 3.

A key advantage of optimization-based approaches is that they allow the
potential for customization of the controller based on changes in mission,
condition and environment. Because the controller is solving the optimiza-
tion problem online, updates can be made to the cost function, to change
the desired operation of the system; to the model, to reflect changes in pa-
rameter values or damage to sensors and actuators; and to the constraints,
to reflect new regions of the state space that must be avoided due to exter-
nal influences. Thus, many of the challenges of designing controllers that
are robust to a large set of possible uncertainties become embedded in the
online optimization.

1.2 Trajectory Tracking and Gain Scheduling

We begin by considering the problem of tracking a feasible trajectory. As-
sume that a trajectory generator is able to generate a trajectory (xd, ud) that
satisfies the dynamics (1.1) and satisfies r(t) = h(xd(t), ud(t)). To design
the controller, we construct the error system. Let e = x−xd and v = u−ud

and compute the dynamics for the error:

ė = ẋ − ẋd = f(x, u) − f(xd, ud)

= f(e + xd, v + ud) − f(xd) =: F (e, v, xd(t), ud(t)).

In general, this system is time-varying.
For trajectory tracking, we can assume that e is small (if our controller

1.2. TRAJECTORY TRACKING AND GAIN SCHEDULING 4

is doing a good job), and so we can linearize around e = 0:

de

dt
≈ A(t)e + B(t)v, A(t) =

∂F

∂e

∣∣∣∣
(xd(t),ud(t))

, B(t) =
∂F

∂v

∣∣∣∣
(xd(t),ud(t)

.

It is often the case that A(t) and B(t) depend only on xd, in which case it
is convenient to write A(t) = A(xd) and B(t) = B(xd).

We start by reviewing the case where A(t) and B(t) are constant, in
which case our error dynamics become

ė = Ae + Bv.

This occurs, for example, if the original nonlinear system is linear. We can
then search for a control system of the form

v = −Ke + krr.

In the case where r is constant, we can apply the results of Chapter 6 of
ÅM08 and solve the problem by finding a gain matrix K that gives the
desired close loop dynamics (e.g., by eigenvalue assignment) and choosing
kr to give the desired output value at equilibrium. The equilibrium point is
given by

xe = −(A − BK)−1Bkrr =⇒ ye = −C(A − BK)−1Bkrr

and if we wish the output to be y = r it follows that

kr = −1/
(
C(A − BK)−1B

)
.

It can be shown that this formulation is equivalent to a two degree of freedom
design where xd and ud are chosen to give the desired reference output
(Exercise 1.1).

Returning to the full nonlinear system, assume now that xd and ud are
either constant or slowly varying (with respect to the performance criterion).
This allows us to consider just the (constant) linearized system given by
(A(xd), B(xd)). If we design a state feedback controller K(xd) for each xd,
then we can regulate the system using the feedback

v = K(xd)e.

Substituting back the definitions of e and v, our controller becomes

u = −K(xd)(x − xd) + ud.

Note that the controller u = α(x, xd, ud) depends on (xd, ud), which them-
selves depend on the desired reference trajectory. This form of controller is
called a gain scheduled linear controller with feedforward ud.

More generally, the term gain scheduling is used to describe any con-
troller that depends on a set of measured parameters in the system. So, for
example, we might write

u = −K(x, µ) · (x − xd) + ud,

1.2. TRAJECTORY TRACKING AND GAIN SCHEDULING 5

Figure 1.2: Gain scheduling. A general gain scheduling design involves finding a
gain K at each desired operating point. This can be thought of as a gain surface,
as shown on the left (for the case of a scalar gain). An approximation to this gain
can be obtained by computing the gains at a fixed number of operating points
and then interpolated between those gains. This gives an approximation of the
continuous gain surface, as shown on the right.

where K(x, µ) depends on the current system state (or some portion of it)
and an external parameter µ. The dependence on the current state x (as
opposed to the desired state xd) allows us to modify the closed loop dynamics
differently depending on our location in the state space. This is particularly
useful when the dynamics of the process vary depending on some subset of
the states (such as the altitude for an aircraft or the internal temperature
for a chemical reaction). The dependence on µ can be used to capture the
dependence on the reference trajectory, or they can reflect changes in the
environment or performance specifications that are not modeled in the state
of the controller.

One limitation of gain scheduling as we have described it is that a separate
set of gains must be designed for each operating condition xd. In practice,
gain scheduled controllers are often implemented by designing controllers at
a fixed number of operating points and then interpolating the gains between
these points, as illustrated in Figure 1.2. Suppose that we have a set of
operating points xd,j , j = 1, . . . , N . Then we can write our controller as

u = ud − K(x)e K(x) =
∑

(αj(x)Kj),

where Kj is a set of gains designed around the operating point xd,j and αj(x)
is a weighting factor. For example, we might choose the weights αj(x) such
that we take the gains corresponding to the nearest two operating points
and weight them according to the Euclidean distance of the current state
from that operating point; if the distance is small then we use a weight very
near to 1 and if the distance is far then we use a weight very near to 0.

While the intuition behind gain scheduled controllers is fairly clear, some
caution in required in using them. In particular, a gain scheduled controller
is not gauranteed to be stable even if K(x, µ) locally stabilizes the system

1.2. TRAJECTORY TRACKING AND GAIN SCHEDULING 6

Figure 1.3: Vehicle steering using gain scheduling.

around a given equilibrium point. Gain scheduling can be proven to work
in the case when the gain varies sufficiently slow (Exercise 1.3).

Example 1.1 Steering control with velocity scheduling
Consider the problem of controlling the motion of a automobile so that it
follows a given trajectory on the ground, as shown in Figure 1.3. We use
the model derived in ÅM08, choosing the reference point to be the center of
the rear wheels. This gives dynamics of the form

ẋ = cos θ v

ẏ = sin θ v

θ̇ =
v

l
tanφ,

(1.2)

where (x, y, θ) is the position and orientation of the vehicle, v is the veloc-
ity and φ is the steering angle, both considered to be inputs, and l is the
wheelbase.

A simple feasible trajectory for the system is to follow a straight line in
the x direction at lateral position yr and fixed velocity vr. This corresponds
to a desired state xd = (vrt, yr, 0) and nominal input ud = (vr, 0). Note that
(xd, ud) is not an equilibrium point for the system, but it does satisfy the
equations of motion.

Linearizing the system about the desired trajectory, we obtain

Ad =
∂f

∂x

∣∣∣∣
(xd,ud)

=




0 0 − sin θ
0 0 cos θ
0 0 0





∣∣∣∣∣∣
(xd,ud)

=




0 0 0
0 0 1
0 0 0



 ,

Bd =
∂f

∂u

∣∣∣∣
(xd,ud)

=




1 0
0 0
0 vr/l



 .

We form the error dynamics by setting e = x − xd and w = u − ud:

ėx = w1, ėy = eθ, ėθ =
vr

l
w2.

We see that the first state is decoupled from the second two states and
hence we can design a controller by treating these two subsystems separately.

1.3. TRAJECTORY GENERATION AND DIFFERENTIAL FLATNESS 7

Suppose that we wish to place the closed loop eigenvalues of the longitudinal
dynamics (ex) at λ1 and place the closed loop eigenvalues of the lateral
dynamics (ey, eθ) at the roots of the polynomial equation s2 + a1s+ a2 = 0.
This can accomplished by setting

w1 = −λ1ex

w2 =
l

vr
(a1ey + a2eθ).

Note that the gains depend on the velocity vr (or equivalently on the nominal
input ud), giving us a gain scheduled controller.

In the original inputs and state coordinates, the controller has the form

[
v
φ

]
= −




λ1 0 0

0
a1l

vr

a2l

vr





︸ ︷︷ ︸
Kd




x − vrt
y − yr

θ





︸ ︷︷ ︸
e

+

[
vr

0

]

︸ ︷︷ ︸
ud

.

The form of the controller shows that at low speeds the gains in the steering
angle will be high, meaning that we must turn the wheel harder to achieve
the same effect. As the speed increases, the gains become smaller. This
matches the usual experience that at high speed a very small amount of
actuation is required to control the lateral position of a car. Note that the
gains go to infinity when the vehicle is stopped (vr = 0), corresponding to
the fact that the system is not reachable at this point. ∇

1.3 Trajectory Generation and Differential Flatness

We now return to the problem of generating a trajectory for a nonlinear
system. Consider first the case of finding a trajectory xd(t) that steers the
system from an initial condition x0 to a final condition xf . We seek a feasible
solution (xd(t), ud(t) that satisfies the dynamics of the process:

ẋd = f(xd, ud), xd(0) = x0, xd(T) = xf . (1.3)

In addition, we may wish to satisfy additional constraints on the dynamics:

• Input saturation: |u(t)| < M ;

• State constraints: g(x) ≤ 0

• Tracking: h(x) = r(t)

• Optimization:

min

∫ T

0
L(x, u)dt + V (x(T), u(T))

Formally, this problem corresponds to a two-point boundary value problem
and can be quite difficult to solve in general.

1.3. TRAJECTORY GENERATION AND DIFFERENTIAL FLATNESS 8

input constraints → curvature constraints

Figure 1.4: Simple model for an automobile. We wish to find a trajectory from an
initial state to a final state that satisfies the dynamics of the system and constraints
on the curvature (imposed by the limited travel of the front wheels).

As an example of the type of problem we would like to study, consider
the problem of steering a car from an initial condition to a final condition,
as show in Figure 1.4. To solve this problem, we must find a solution to
the differential equations (1.2) that satisfies the endpoint conditions. Given
the nonlinear nature of the dynamics, it seems unlikely that one could find
explicit solutions that satisfy the dynamics except in very special cases (such
as driving in a straight line).

A closer inspection of this system shows that it is possible to understand
the trajectories of the system by exploiting the particular structure of the
dynamics. Suppose that we are given a trajectory for the rear wheels of
the system, x(t) and y(t). From equation (1.2), we see that we can use this
solution to solve for the angle of the car by writing

ẏ

ẋ
=

sin θ

cos θ
=⇒ θ = tan−1(ẏ/ẋ).

Furthermore, given θ we can solve for the velocity using the equation

ẋ = v cos θ =⇒ v = ẋ/ cos θ,

assuming cos θ)= 0 (if it is, use v = ẏ/ sin θ). And given θ, we can solve for
φ using the relationship

θ̇ =
v

l
tanφ =⇒ φ = tan−1(

lθ̇

v
).

Hence all of the state variables and the inputs can be determined by the
trajectory of the rear wheels and its derivatives. This property of a system
is known as differential!flatness.

Definition 1.1 (Differential flateness). A nonlinear system (1.1) is differ-
entially flat if there exists a function α such that

z = α(x, u, u̇ . . . , u(p))

and we can write the solutions of the nonlinear system as functions of z and
an finite number of derivatives

x = β(z, ż, . . . , z(q)),

u = γ(z, ż, . . . , z(q)).

1.3. TRAJECTORY GENERATION AND DIFFERENTIAL FLATNESS 9

For a differentially flat system, all of the feasible trajectories for the
system can be written as functions of a flat output z(·) and its derivatives.
The number of flat outputs is always equal to the number of system inputs.
The kinematic car is differentially flat with the position of the rear wheels as
the flat output. Differentially flat systems were originally studied by Fliess
et al. [FLMR92].

Differentially flat systems are useful in situations where explicit trajec-
tory generation is required. Since the behavior of flat system is determined
by the flat outputs, we can plan trajectories in output space, and then map
these to appropriate inputs. Suppose we wish to generate a feasible trajec-
tory for the the nonlinear system

ẋ = f(x, u), x(0) = x0, x(T) = xf .

If the system is differentially flat then

x(0) = β
(
z(0), ż(0), . . . , z(q)(0)

)
= x0

x(T) = γ
(
z(T), ż(T), . . . , z(q)(T)

)
= xf

(1.4)

and any trajectory for z that satisfies these boundary conditions will be a
feasible trajectory for the system.

In particular, given initial and final conditions on z and its derivatives
that satisfy equation (1.4), any curve z(·) satisfing those conditions will
correspond to a feasible trajectory of the system. We can parameterize the
flat output trajectory using a set of smooth basis functions ψi(t):

z(t) =
N∑

i=1

αiψi(t), αi ∈ R.

We seek a set of coefficients αi, i = 1, . . . , N such that z(t) satisfies the
boundary conditions (1.4). The derivatives of the flat output can be com-
puted in terms of the derivatives of the basis functions:

ż(t) =
N∑

i=1

αiψ̇i(t)

...

ż(q)(t) =
N∑

i=1

αiψ
(q)
i (t).

1.3. TRAJECTORY GENERATION AND DIFFERENTIAL FLATNESS 10

We can thus write the conditions on the flat outputs and their derivatives
as 



ψ1(0) ψ2(0) . . . ψN (0)
ψ̇1(0) ψ̇2(0) . . . ψ̇N (0)

...
...

...

ψ(q)
1 (0) ψ(q)

2 (0) . . . ψ(q)
N (0)

ψ1(T) ψ2(T) . . . ψN (T)
ψ̇1(T) ψ̇2(T) . . . ψ̇N (T)

...
...

...

ψ(q)
1 (T) ψ(q)

2 (T) . . . ψ(q)
N (T)








α1
...
αN



 =





z(0)
ż(0)

...
z(q)(0)

z(T)
ż(T)

...
z(q)(T)





This equation is a linear equation of the form Mα = z̄. Assuming that
M has a sufficient number of columns and that it is full column rank, we
can solve for a (possibly non-unique) α that solves the trajectory generation
problem.

Example 1.2 Nonholonomic integrator
A simple nonlinear system called a nonholonomic integrator [Bro81] is given
by the differential equations

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

This system is differentially flat with flat output z = (x1, x3). The relation-
ship betwen the flat variables and the states is given by

x1 = z1

x2 = ẋ3/ẋ1 = ż2/ż1

x3 = z2.

Using simple polynomials as our basis functions,

ψ1,1(t) = 1 ψ1,2(t) = tψ1,3(t) = t2ψ1,4(t) = t3

ψ2,1(t) = 1 ψ2,2(t) = tψ2,3(t) = t2ψ2,4(t) = t3,

the equations for the feasible (flat) trajectory become




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 T T 2 T 3 0 0 0 0
0 1 2T 3T 2 0 0 0 0
0 0 0 0 1 T T 2 T 3

0 0 0 0 0 1 2T 3T 2









α11

α12

α13

α14

α21

α22

α23

α24





=





x1,0

1
x3,0

x2,0

x1,f

1
x3,f

x2,f





.

1.3. TRAJECTORY GENERATION AND DIFFERENTIAL FLATNESS 11

This is a set of 8 linear equations in 8 variables. It can be shown that the
matrix M is full rank and the system can be solved numerically. ∇

Note that no ODEs need to be integrated in order to compute the feasible
trajectories for a differentially flat system (unlike optimal control methods
that we will consider in the next chapter, which involve parameterizing the
input and then solving the ODEs). This is the defining feature of differ-
entially flat systems. The practical implication is that nominal trajectories
and inputs which satisfy the equations of motion for a differentially flat
system can be computed in a computationally efficient way (solution of al-
gebraic equations). Since the flat output functions are completely free, the
only constraints that must be satisfied are the initial and final conditions
on the endpoints, their tangents, and higher order derivatives. Any other
constraints on the system, such as bounds on the inputs, can be transformed
into the flat output space and (typically) become limits on the curvature or
higher order derivative properties of the curve.

If there is a performance index for the system, this index can be trans-
formed and becomes a functional depending on the flat outputs and their
derivatives up to some order. By approximating the performance index we
can achieve paths for the system that are suboptimal but still feasible. This
approach is often much more appealing than the traditional method of ap-
proximating the system (for example by its linearization) and then using
the exact performance index, which yields optimal paths but for the wrong
system.

In light of the techniques that are available for differentially flat systems,
the characterization of flat systems becomes particularly important. Unfor-
tunately, general conditions for flatness are not known, but all (dynamic)
feedback linearizable systems are differentially flat, as are all driftless sys-
tems that can be converted into chained form (see [vNRM94] for details).
Another large class of differentially flat systems are those in “pure feedback
form”:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2, x3)

...

ẋn = fn(x1, . . . , xn, u).

Under certain regularity conditions these systems are differentially flat with
output y = x1. These systems have been used for so-called “integrator
backstepping” approaches to nonlinear control by Kokotovic et al. [KKM91].
Figure 1.5 shows some additional systems that are differentially flat.

Example 1.3 Planar ducted fan
Consider the dynamics of a planar, vectored thrust flight control system as
shown in Figure 1.6. This system consists of a rigid body with body fixed
forces and is a simplified model for the Caltech ducted fan [?]. Let (x, y, θ)

1.3. TRAJECTORY GENERATION AND DIFFERENTIAL FLATNESS 12

Figure 1.5: Examples of flat systems.

denote the position and orientation of the center of mass of the fan. We
assume that the forces acting on the fan consist of a force f1 perpendicular
to the axis of the fan acting at a distance r from the center of mass, and a
force f2 parallel to the axis of the fan. Let m be the mass of the fan, J the
moment of inertia, and g the gravitational constant. We ignore aerodynamic
forces for the purpose of this example.

The dynamics for the system are

mẍ = f1 cos θ − f2 sin θ,

mÿ = f1 sin θ + f2 cos θ − mg,

J θ̈ = rf1.

(1.5)

Martin et al. [MDP94] showed that this system is differentially flat and that
one set of flat outputs is given by

z1 = x − (J/mr) sin θ,

z2 = y + (J/mr) cos θ.
(1.6)

Using the system dynamics, it can be shown that

z̈1 cos θ + (z̈2 + g) sin θ = 0 (1.7)

and thus given z1(t) and z2(t) we can find θ(t) except for an ambiguity of
π and away from the singularity z̈1 = z̈2 + g = 0. The remaining states and
the forces f1(t) and f2(t) can then be obtained from the dynamic equations,
all in terms of z1, z2, and their higher order derivatives. ∇

1.4. FURTHER READING 13

net thrust

θ

(x, y)
f2

x

y
f1

Figure 1.6: Planar ducted fan engine. Thrust is vectored by moving the flaps at
the end of the duct.

1.4 Further Reading

The two degree of freedom controller structure introduced in this chapter
is described in a bit more detail in ÅM08 [ÅM08] (in the context of output
feedback control) and a description of some of the origins of this structure are
provided in the “Further Reading” section of Chapter 8. Gain scheduling is a
classical technique that is often omitted from introductory control texts, but
a good desciption can be found in the survey article by Rugh [Rug90] and the
work of Shamma [Sha90]. Differential flatness was originally developed by
Fliess, Levin, Martin and Rouchon [FLMR92]. See [Mur97] for a description
of the role of flatness in control of mechanical systems and [vNM98] for more
information on flatness applied to flight control systems.

Exercises

1.1 (Feasible trajectory for constant reference) Consider a linear input/output
system of the form

Ȧx + Bu, y = Cx (1.8)

in which we wish to track a constant reference r. A feasible (steady state)
trajectory for the system is given by solving the equation

[
0
r

]
=

[
A B
C 0

] [
xd

uff

]

for xd and uff.

(a) Show that these equations always has a solution as long as the linear
system (1.8) is reachable.

1.4. FURTHER READING 14

(b) In Section 6.2 of ÅM08 we showed that the reference tracking problem
could be solved using a control law of the form u = −Kx + krr. Show that
this is equivalent to a two degree of freedom control design using xd and uff

and give a formula for kr in terms of xd and uff. Show that this formula
matches that given in ÅM08.

1.2 A simplified model of the steering control problem is derived in Åström
and Murray, Example 5.12. The model has the form

ż =

[
0 1
0 0

]
z +

[
γ
1

]
u

y = z1

where z ∈ R2 is the (normalized) state of the system and γ is a parameter
related to the speed of the vehicle. Suppose that we wish to track a piecewise
constant reference trajectory

r = square(2πt/20),

where square is the square wave function in MATLAB. Suppose further
that the speed of the vehicle varies according to the formula

γ = 2 + 2 sin(2πt/50).

Design and implement a gain-scheduled controller for this system by first
designing a state space controller that places the closed loop poles of the
system at the roots of s2 + 2ζω0s + ω2

0, where ζ = 0.7 and ω0 = 1. You
should design controllers for three different parameter values: γ = 0, 2, 4.
Then use linear interpolation to compute the gain for values of γ between
these fixed values. Compare the performance of the gain scheduled controller
to a simple controller that assumes γ = 2 for the purpose of the control
design (but leaving γ time-varying in your simulation).

Note: a MATLAB file with the vehicle dynamics is available on the course
web page. You can use this if you like to get the reference trajectory and
parameter variation.

1.3 (Stability of gain scheduled controllers for slowly varying systems (ÅM08))
Consider a nonlinear control system with gain scheduled feedback

ė = f(e, v) v = k(µ)e,

where µ(t) ∈ R is an externally specified parameter (eg, the desired trajec-
tory) and k(µ) is chosen such that the linearization of the closed loop system
around the origin is stable for each fixed µ.

Show that if |µ̇| is sufficiently small then the equilibrium point is locally
asymptotically stable for the full nonlinear, time-varying system. (Hint: find
a Lyapunov function of the form V = xT P (µ)x based on the linearization of
the system dynamics for fixed µ and then show this is a Lyapunov function
for the full system.)

1.4. FURTHER READING 15

1.4 (Flatness of systems in reachable canonical form) Consider a single input
system in reachable canonical form [ÅM08, Sec. 6.1]:

dx

dt
=





−a1 −a2 −a3 . . . −an

1 0 0 . . . 0
0 1 0 . . . 0
...

. . .
. . .

...
0 1 0




x +





1
0
0
...
0




u,

y =
[
b1 b2 b3 . . . bn

]
x + du.

(1.9)

Suppose that we wish to find an input u that moves the system from x0 to
xf . This system is differentially flat with flat output given by z = xn and
hence we can parameterize the solutions by a curve of the form

xn(t) =
N∑

k=0

αkt
k, (1.10)

where N is a sufficiently large integer.

(a) Compute the state space trajectory x(t) and input u(t) corresponding to
equation (1.10) and satisfying the differential equation (1.9). Your answer
should be an equation similar to equation (1.10) for each state xi and the
input u.

(b) Find an explicit input that steers a double integrator system between
any two equilibrium points x0 ∈ R2 and xf ∈ R2.

(c) Show that all reachable systems are differentially flat and give a formula
for the flat output.

1.5 Consider the lateral control problem for an autonomous ground vehicle
as described in Example 1.1 and Section 1.3. Using the fact that the sys-
tem is differentially flat, find an explicit trajectory that solves the following
parallel parking manuever:

x0 = (0, 4)

xf = (0, 0)

xi = (6, 2)

Your solution should consist of two segments: a curve from x0 to xi with
v > 0 and a curve from xi to xf with v < 0. For the trajectory that you

1.4. FURTHER READING 16

determine, plot the trajectory in the plane (x versus y) and also the inputs
v and φ as a function of time.

1.6 Consider first the problem of controlling a truck with trailer, as shown
in the figure below:

ẋ = cos θ u1

ẏ = sin θ u1

φ̇ = u2

θ̇ =
1

l
tanφu1

θ̇1 =
1

d
cos(θ − θ1) sin(θ − θ1)u1,

The dynamics are given above, where (x, y, θ) is the position and orientation
of the truck, φ is the angle of the steering wheels, θ1 is the angle of the trailer,
and l and d are the length of the truck and trailer. We want to generate
a trajectory for the truck to move it from a given initial position to the
loading dock. We ignore the role of obstacles and concentrate on generation
of feasible trajectories.

(a) Show that the system is differentially flat using the center of the rear
wheels of the trailer as the flat output.

(b) Generate a trajectory for the system that steerings the vehicle from an
initial condition with the truck and trailer perpendicular to the loading dock
into the loading dock.

(c) Write a simulation of the system stabilizes the desired trajectory and
demonstrate your two-degree of freedom control system maneuving from
several different initial conditions into the parking space, with either distur-
bances or modeling errors included in the simulation.

Chapter 2
Optimal Control

This set of notes expands on Chapter 6 of Feedback Systems by Åström and
Murray (ÅM08), which introduces the concepts of reachability and state
feedback. We also expand on topics in Section 7.5 of ÅM08 in the area
of feedforward compensation. Beginning with a review of optimization, we
introduce the notion of Lagrange multipliers and provide a summary of the
Pontryagin’s maximum principle. Using these tools we derive the linear
quadratic regulator for linear systems and describe its usage.

Prerequisites. Readers should be familiar with modeling of input/output
control systems using differential equations, linearization of a system around
an equilibrium point and state space control of linear systems, including
reachability and eigenvalue assignment.

2.1 Review: Optimization

Consider first the problem of finding the maximum of a smooth function F :
Rn → R. That is, we wish to find a point x∗ ∈ Rn such that F (x∗) ≥ F (x)
for all x ∈ Rn. A necessary condition for x∗ to be a maximum is that the
gradient of the function be zero at x∗,

∂F

∂x
(x∗) = 0.

Figure 2.1 gives a graphical interpretation of this condition. Note that these
are not sufficient conditions; the points x1 and x2 and x∗ in the figure all

x2

x∗

x1

Figure 2.1: Optimization of functions. The maximum of a function occurs at a
point where the gradient is zero.

2.1. REVIEW: OPTIMIZATION 18

x∗

F (x)

G(x) = 0

(a) Constrained optimization

G(x) = 0

∂G
∂x

(normal)

(b) Constraint normal vectors

Figure 2.2: Optimization with constraints. (a) We seek a point x∗ that maximizes
F (x) while lying on the surface G(x) = 0. (b) We can parameterize the constrained
directions by computing the gradient of the constraint G.

satisfy the necessary condition but only one is the (global) maximum.
The situation is more complicated if constraints are present. Let Gi :

Rn → R, i = 1, . . . , k be a set of smooth functions with Gi(x) = 0 repre-
senting the constraints. Suppose that we wish to find x∗ ∈ Rn such that
Gi(x∗) = 0 and F (x∗) ≥ F (x) for all x ∈ {x ∈ Rn : Gi(x) = 0, i = 1, . . . , k}.
This situation can be visualized as constraining the point to a surface (de-
fined by the constraints) and searching for the maximum of the cost function
along this surface, as illustrated in Figure 2.2a.

A necessary condition for being at a maximum is that there are no di-
rections tangent to the constraints that also increase the cost. The normal
directions to the surface are spanned by ∂Gi/∂x, as shown in Figure 2.2b.
A necessary condition is that the gradient of F is spanned by vectors that
are normal to the constraints, so that the only directions that increase the
cost violate the constraints. We thus require that there exist scalars λi,
i = 1, . . . , k such that

∂F

∂x
(x∗) +

k∑

i=1

λi
∂Gi

∂x
(x∗) = 0.

If we let G =
[
G1 G2 . . . Gk

]T
, then we can write this condition as

∂F

∂x
+ λT ∂G

∂x
= 0

the term ∂F
∂x is the usual (gradient) optimality condition while the term ∂G

∂x
is used to “cancel” the gradient in the directions normal to the constraint.

An alternative condition can be derived by modifying the cost function
to incorporate the constraints. Defining F̃ = F +

∑
λiGi, the necessary

condition becomes
∂F̃

∂x
(x∗) = 0.

2.1. REVIEW: OPTIMIZATION 19

The scalars λi are called Lagrange multipliers. Minimize F̃ is equivalent to
the optimization given by

min
x

(
F (x) + λT G(x)

)
.

The variables λ can be regarded as free variables, which implies that need
to choose x such that G(x) = 0. Otherwise, we could choose λ to generate
a large cost.

Example 2.1 Two free variables with a constraint
Consider the cost function given by

F (x) = F0 − (x1 − a)2 − (x2 − b)2,

which has an unconstrained maximum at x = (a, b). Suppose that we add
a constraint G(x) = 0 given by

G(x) = x1 − x2.

With this constrain, we seek to optimize F subject to x1 = x2. Although
in this case we could easily do this by simple substitution, we instead carry
out the more general procedure using Lagrange multipliers.

The augmented cost function is given by

F̃ (x) = F0 − (x1 − a)2 − (x2 − b)2 + λ(x1 − x2),

where λ is the Lagrange multiplier for the constraint. Taking the derivative
of F , we have

∂F

∂x
=
[
−2x1 + 2a + λ −2x2 + 2b − λ

]
.

Setting each of these equations equal to zero, we have that at the maximum

x∗
1 = a + λ/2, x∗

2 = b − λ/2.

The remaining equation that we need is the constraint, which requires that
x∗

1 = x∗
2. Using these three equations, we see that λ∗ = b − a and we have

x∗
1 =

a + b

2
, x∗

2 =
a + b

2
.

To verify the geometric view described above, note that the gradients of
F and G are given by

∂F

∂x
=
[
−2x1 + 2a −2x2 + 2b

]
,

∂G

∂x
=
[
1 −1
]
.

At the optimal value of the (constrained) optimization, we have

∂F

∂x
=
[
a − b b − a

]
,

∂G

∂x
=
[
1 −1
]
.

2.2. OPTIMAL CONTROL OF SYSTEMS 20

Although the derivative of F is not zero, it is pointed in a direction that
is normal to the constraint, and hence we cannot decrease the cost while
staying on the constraint surface. ∇

We have focused on finding the maximum of a function. We can switch
back and forth between maximum and minimum by simply negating the
cost function:

max
x

F (x) = min
x

(
−F (x)

)

We see that the conditions that we have derived are independent of the sign
of F since they only depend on the gradient begin zero in approximate di-
rections. Thus finding x∗ that satisfies the conditions corresponds to finding
an extremum for the function.

Very good software is available for solving optimization problems nu-
merically of this sort. The NPSOL and SNOPT libraries are available in
FORTRAN (and C). In MATLAB, the fmin function can be used to solve
a constrained optimization problem.

2.2 Optimal Control of Systems

Consider now the optimal control problem:

min
u

∫ T

0
L(x, u) dt

︸ ︷︷ ︸
integrated cost

+ V
(
x(T), u(T)

)

︸ ︷︷ ︸
final cost

subject to the constraint

ẋ = f(x, u) x ∈ R
n, u ∈ R

m.

Abstractly, this is a constrained optimization problem where we seek a fea-
sible trajectory (x(t), u(t)) that minimizes the cost function

J(x, u) =

∫ T

0
L(x, u) dt + V

(
x(T), u(T)

)
.

More formally, this problem is equivalent to the “standard” problem of min-
imizing a cost function J(x, u) where (x, u) ∈ L2[0, T] (the set of square
integrable functions) and h(z) = ẋ(t)− f(x(t), u(t)) = 0 models the dynam-
ics.

There are many variations and special cases of the optimal control prob-
lem. We mention a few here:

Infinite Horizon. if we let T = ∞ and set V = 0, then we seek to optimize a
cost function over all time. This is called the infinite horizon optimal control
problem, versus the finite horizon problem with T < ∞.

2.2. OPTIMAL CONTROL OF SYSTEMS 21

Linear Quadratic. If the dynamical system is linear and the cost function is
quadratic, we obtain the linear quadratic optimal control problem:

ẋ = Ax + Bu J =

∫ T

0

(
xT Qx + uT Ru

)
dt + xT (T)P1x(T).

In this formulation, Q ≥ 0 penalizes state error (assumes xd = 0), R > 0
penalizes the input (must be positive definite) and P1 > 0 penalizes terminal
state.

Terminal Constraints. It is often convenient to ask that the final value of
the trajectory, denoted xf , be specified. We can do this by requiring that
x(T) = xf or by using a more general form of constraint:

ψi(x(T)) = 0, i = 1, . . . , q.

The fully constrained case is obtained by setting q = n and defining ψi(x(T)) =
xi(T) − xi,f .

Time Optimal. If we constrain the terminal condition to x(T) = xf , let
the terminal time T be free (so that we can optimize over it) and choose
L(x, u) = 1, we can find the time-optimal trajectory between an initial and
final condition. This problem is usually only well-posed if we additionally
constrain the inputs u to be bounded.

A very general set of conditions are available for the optimal control problem
that captures most of these special cases in a unifying framework. Consider
a nonlinear system

ẋ = f(x, u) x = R
n

x(0) given u ∈ Ω ⊂ R
p

where f(x, u) = (f1(x, u), . . . fn(x, u)) : Rn×Rp → Rn. We wish to minimize
a cost function J with terminal constraints:

J =

∫ T

0
L(x, u) dt + V (x(T)), ψ(x(T)) = 0.

The function ψ : Rn → Rq gives a set of q terminal constraints. Analogous
to the case of optimizing a function subject to constraints, we construct the
Hamiltonian:

H = L + λT f = L +
∑

λifi.

A set of necessary conditions for a solution to be optimal was derived by
Pontryagin [PBGM62].

Theorem 2.1 (Maximum Principle). If (x∗, u∗) is optimal, then there exists
λ∗(t) ∈ Rn and ν∗ ∈ Rq such that

ẋi =
∂H

∂λi
− λ̇i =

∂H

∂xi

x(0) given, ψ(x(T)) = 0

λ(T) =
∂V

∂x
(x(T)) + νT ∂ψ

∂x

2.2. OPTIMAL CONTROL OF SYSTEMS 22

and
H(x∗(t), u∗(t),λ∗(t)) ≤ H(x∗(t), u,λ∗(t)) for all u ∈ Ω

The form of the optimal solution is given by the solution of a differential
equation with boundary conditions. If u = argminH(x, u,λ) exists, we
can use this to choose the control law u and solve for the resulting feasible
trajectory that minimizes the cost. The boundary conditions are given by
the n initial states x(0), the q terminal constraints on the state ψ(x(T)) = 0
and the n − q final values for the Lagrange multipliers

λ(T) =
∂V

∂x
(x(T)) + νT ∂ψ

∂x
.

In this last equation, ν is a free variable and so there are n equations in n+q
free variables, leaving n − q constraints on λ(T). In total, we thus have 2n
boundary values.

The maximum principle is a very general (and elegant) theorem. It allows
the dynamics to be nonlinear and the input to be constrained to lie in a set
Ω, allowing the possibility of bounded inputs. If Ω = Rm (unconstrained
input) and H is differentiable, then a necessary condition for the optimal
input is

∂H

∂u
= 0.

We note that even though we are minimizing the cost, this is still usually
called the maximum principle (artifact of history).

Sketch of proof. We follow the proof given by Lewis and Syrmos [LS95],
omitting some of the details required for a fully rigorous proof. We use
the method of Lagrange multipliers, augmenting our cost function by the
dynamical constraints and the terminal constraints:

J̃(x(·), u(·)) = J(x, u) +

∫ T

0
λT (t)
(
ẋ(t) − f(x, u)

)
dt + νTψ(x(T), u(T))

=

∫ T

0

(
L(x, u) + λT (t)

(
ẋ(t) − f(x, u)

)
dt

+ V (x(T), u(T)) + νTψ(x(T), u(T)).

Note that λ is a function of time, with each λ(t) corresponding to the instan-
taneous constraint imposed by the dynamics. The integral over the interval
[0, T] plays the role of the sum of the finite constraints in the regular opti-
mization.

Making use of the definition of the Hamiltonian, the augmented cost
becomes

J̃(x(·), u(·)) =

∫ T

0

(
H(x, u)−λT (t)ẋ

)
dt+V (x(T), u(T))+νTψ(x(T), u(T)).

2.3. EXAMPLES 23

We can now “linearize” the cost function around the optimal solution x(t) =
x∗(t) + δx(t), u(t) = u∗(t) + δu(t). Using Leibnitz’s rule, we have

2.3 Examples

To illustrate the use of the maximum principle, we consider a number of
analytical examples. Additional examples are given in the exercises.

Example 2.2 Scalar linear system
Consider the optimal control problem for the system

ẋ = ax + bu, (2.1)

where x = R is a scalar state, u ∈ R is the input, the initial state x(t0)
is given, and a, b ∈ R are positive constants. We wish to find a trajectory
(x(t), u(t)) that minimizes the cost function

J = 1
2

∫ tf

t0

u2(t) dt + 1
2cx2(tf),

where the terminal time tf is given and c > 0 is a constant. This cost
function balances the final value of the state with the input required to get
to that position.

To solve the problem, we define the various elements used in the maxi-
mum principle. Our integrated and terminal costs are given by

L = 1
2u2(t) V = 1

2cx2(tf).

We write the Hamiltonian of this system and derive the following expres-
sions:

H = L + λf = 1
2u2 + λ(ax + bu)

λ̇ = −
∂H

∂x
= −aλ, λ(tf) =

∂V

∂x
= cx(tf).

This is a final value problem for a linear differential equation and the solution
can be shown to be

λ(t) = cx(tf)ea(tf−t)

The optimal control is given by

∂H

∂u
= u + bλ = 0 ⇒ u∗(t) = −bλ(t) = −bcx(tf)ea(tf−t).

Substituting this control into the dynamics given by equation (2.1) yields a
first-order ODE in x:

ẋ = ax − b2cx(tf)ea(tf−t).

This can be solved explicitly as

x∗(t) = x(to)e
a(t−to) +

b2c

2a
x∗(tf)
[
ea(tf−t) − ea(t+tf−2to)

]
.

2.3. EXAMPLES 24

Setting t = tf and solving for x(tf) gives

x∗(tf) =
2a ea(tf−to)x(to)

2a − b2c
(
1 − e2a(tf−to)

)

and finally we can write

u∗(t) = −
2abc ea(2tf−to−t)x(to)

2a − b2c
(
1 − e2a(tf−to)

)

x∗(t) = x(to)e
a(t−to) +

b2c ea(tf−to)x(to)

2a − b2c
(
1 − e2a(tf−to)

)
[
ea(tf−t) − ea(t+tf−2to)

]
.

We can use the form of this expression to explore how our cost function
affects the optimal trajectory. For example, we can ask what happens to
the terminal state x∗(tf) and c → ∞. Setting t = tf in equation (2.2) and
taking the limit we find that

lim
c→∞

x∗(tf) = 0.

∇

Example 2.3 Bang-bang control
The time-optimal control program for a linear system has a particularly
simple solution. Consider a linear system with bounded input

ẋ = Ax + Bu, |u| ≤ 1

and suppose we wish to minimize the time required to move from an initial
state x0 to a final state xf . Without loss of generality we can take xf = 0.
We choose the cost functions and terminal constraints to satisfy

J =

∫ T

0
1 dt, ψ(x(T)) = x(T)

To find the optimal control, we form the Hamiltonian

H = 1 + λT (Ax + Bu) = 1 + (λT A)x + (λT B)u.

Now apply the conditions in the maximum principle:

ẋ =
∂H

∂λ
= Ax + Bu

−λ̇ =
∂H

∂x
= ATλ

u = arg min H = −sgn(λT B)

The optimal solution always satisfies this equation (necessary condition)
with x(0) = x0 and x(T) = 0. It follows that the input is always u =
±1 =⇒ “bang-bang”. ∇

2.4. LINEAR QUADRATIC REGULATORS 25

2.4 Linear Quadratic Regulators

In addition to its use for computing optimal, feasible trajectories for a
system, we can also use optimal control theory to design a feedback law
u = α(x) that stabilizes a given equilibrium point. Roughly speaking, we do
this by continuously resolving the optimal control problem from our current
state x(t) and applying the resulting input u(t). Of course, this approach is
impractical unless we can solve explicitly for the optimal control and some-
how rewrite the optimal control as a function of the current state in a simple
way. In this section we explore exactly this approach for linear quadratic
regulator.

We begin with the the finite horizon, linear quadratic regulator (LQR)
problem, given by

ẋ = Ax + Bu x ∈ R
n, u ∈ R

n, x0 given

J̃ =
1

2

∫ T

0

(
xT Qxx + uT Quu

)
dt +

1

2
xT (T)P1x(T)

where Qx ≥ 0, Qu > 0, P1 ≥ 0 are symmetric, positive (semi-) definite
matrices. Note the factor of 1

2 is usually left out, but we included it here
to simplify the derivation. (The optimal control will be unchanged if we
multiply the entire cost function by two.)

To find the optimal control, we apply the maximum principle. We being
by computing the Hamiltonian H:

H = xT Qxx + uT Quu + λT (Ax + Bu).

Applying the results of Theorem 2.1, we obtain the necessary conditions

ẋ =

(
∂H

∂λ

)T

= Ax + Bu x(0) = x0

−λ̇ =

(
∂H

∂x

)T

= Qxx + ATλ λ(T) = P1x(T)

0 =
∂H

∂u
= Quu + λT B.

(2.2)

The last condition can be solved to obtain the optimal controller

u = −Q−1
u BTλ,

which can be substituted into the dynamic equation (2.2) To solve for the
optimal control we must solve a two point boundary value problem using the
initial condition x(0) and the final condition λ(T). Unfortunately, it is very
hard to solve such problem in general.

Given the linear nature of the dynamics, we attempt to find a solution
by setting λ(t) = P (t)x(t) where P (t) ∈ Rn×n. Substituting this into the

2.4. LINEAR QUADRATIC REGULATORS 26

necessary condition, we obtain

λ̇ = Ṗ x + Pẋ = Ṗ x + P (Ax − BQ−1
u BT P)x

−Ṗ x − PAx + PBQ−1
u BPx = Qxx + AT Px.

This equation is satisfied if we can find P (t) such that

−Ṗ = PA + AT P − PBQ−1
u BT P + Qx P (T) = P1 (2.3)

This is a matrix differential equation that defines the elements of P (t) from
a final value P (T). Solving it is conceptually no different than solving the
initial value problem for vector-valued ordinary differential equations, except
that we must solve for the individual elements of the matrix P (t) backwards
in time (Exercise ??). Equation (2.3) is called the .

An important property of the solution to the optimal control problem
when written in this form is that P (t) can be solved without knowing either
x(t) or u(t). This allows the two point boundary value problem to be sepa-
rated into first solving a final-value problem and then solving a time-varying
initial-value problem. More specifically, given P (t) satisfying equation (2.3),
we can apply the optimal input

u(t) = −Q−1
u BT P (t)x.

and then solve the original dynamics of the system forward in time from
the initial condition x(0) = x0. Note that this is a (time-varying) feedback
control that describes how to move from any state to the origin.

An important variation of this problem is the case when we choose T = ∞
and eliminate the terminal cost (set P1 = 0). This gives us the cost function

J =

∫ ∞

0
(xT Qxx + uT Quu) dt. (2.4)

Since we don’t have a terminal cost, there is no constraint on the final value
of λ or, equivalently, P (t). We can thus seek to find a constant P satisfying
equation (2.3). In other words, we seek to find P such that

PA + AT P − PBQ−1
u BT P + Qx = 0. (2.5)

This equation is called the algebraic Riccati equation. Given a solution, we
can choose our input as

u = −Q−1
u BT Px.

This represents a constant gain K = Q−1
u BT P where P is the solution of

the algebraic Riccati equation.
The implications of this result are interesting and important. First, we

notice that if Qx > 0 and the control law corresponds to a finite minimum
of the cost, then we must have that limt→∞ x(t) = 0, otherwise the cost will
be unbounded. This means that the optimal control for moving from any
state x to the origin can be achieved by applying a feedback u = −Kx for
K chosen as described as above and letting the system evolve in closed loop.

2.4. LINEAR QUADRATIC REGULATORS 27

More amazingly, the gain matrix K can be written in terms of the solution
to a (matrix) quadratic equation (2.5). This quadratic equation can be
solved numerically: in MATLAB the command K = lqr(A, B, Q x, Q u)
provides the optimal feedback compensator.

In deriving the optimal quadratic regulator, we have glossed over a num-
ber of important details. It is clear from the form of the solution that we
must have Qu > 0 since its inverse appears in the solution. We would typ-
ically also have Qx > 0 so that the integral cost is only zero when x = 0,
but in some instances we might only case about certain states, which would
imply that Qx ≥ 0. For this case, if we let Qx = HT H (always possible),
our cost function becomes

L =

∫ ∞

0
xT HT Hx + uT Quu dt =

∫ ∞

0
‖Hx‖2 + uT Quu dt.

A technical condition for the optimal solution to exist is that the pair (A, H)
be observable. This makes sense intuitively by considering y = Hx as an
output. If y is not observable then there may be non-zero initial conditions
that produce no output and so the cost would be zero. This would lead to
an ill-conditioned problem and hence we will require that Qx ≥ 0 satisfy an
appropriate observability condition.

We summarize the main results as a theorem.

Example 2.4 Optimal control of a double integrator
Consider a double integrator system

dx

dt
=

[
0 1
0 0

]
x +

[
0
1

]
u.

with quadratic cost given by

Qx =

[
q2 0
0 0

]
, Qu = 1.

The optimal control is given by the solution of matrix Riccati equation (2.5).
Let P be a symmetric positive definite matrix of the form

P =

[
a b
b c

]
.

Then the Riccati equation becomes
[
−b2 + q2 a − bc
a − bc 2b − c2

]
=

[
0 0
0 0

]
,

which has solution

P =

[√
2q q

q
√

2q3

]

.

The controller is given by

K = R−1BT P = [1/q
√

2/q].

2.5. CHOOSING LQR WEIGHTS 28

The feedback law minimizing the given cost function is then u = −Kx.
To better understand the structure of the optimal solution, we examine

the eigenstructure of the closed loop system. The closed-loop dynamics
matrix is given by

Acl = A − BK =

[
0 1

−1/q −
√

2/q

]
.

The characteristic polynomial of this matrix is

λ2 +

√
2

q
λ+

1

q
.

Comparing this to λ2 + 2ζω0λ+ ω2
0, we see that

ω0 =

√
1

q
, ζ =

1√
2
.

Thus the optimal controller gives a closed loop system with damping ratio
ζ = 0.707, giving a good tradeoff between rise time and overshoot (see
ÅM08). ∇

2.5 Choosing LQR weights

One of the key questions in LQR design is how to choose the weights Qx

and Qu. To choose specific values for the cost function weights Qx and
Qu, we must use our knowledge of the system we are trying to control. A
particularly simple choice is to use diagonal weights

Qx =




q1 0

. . .
0 qn



 , Qu =




ρ1 0

. . .
0 ρn



 .

For this choice of Qx and Qu, the individual diagonal elements describe how
much each state and input (squared) should contribute to the overall cost.
Hence, we can take states that should remain small and attach higher weight
values to them. Similarly, we can penalize an input versus the states and
other inputs through choice of the corresponding input weight ρ.

Choosing the individual weights for the (diagonal) elements of the Qx and
Qu matrix can be done by deciding on a weighting of the errors from the in-
dividual terms. Bryson and Ho [BH75] have suggested the following method
for choosing the matrices Qx and Qu in equation (2.4): (1) choose qi and
ρj as the inverse of the square of the maximum value for the corresponding
xi or uj ; (2) modify the elements to obtain a compromise among response
time, damping and control effort. This second step can be performed by
trial and arrow.

2.5. CHOOSING LQR WEIGHTS 29

(a) Harrier “jump jet”

y

θ

F1

F2

r

x

(b) Simplified model

Figure 2.3: Vectored thrust aircraft. The Harrier AV-8B military aircraft (a)
redirects its engine thrust downward so that it can “hover” above the ground.
Some air from the engine is diverted to the wing tips to be used for maneuvering.
As shown in (b), the net thrust on the aircraft can be decomposed into a horizontal
force F1 and a vertical force F2 acting at a distance r from the center of mass.

It is also possible to choose the weights such that only a given subset of
variable are considered in the cost function. Let z = Hx be the output you
want to keep small and verify that (A, H) is observable. Then we can use a
cost function of the form

Qx = HT H Qu = ρI.

The constant ρ allows us to trade off ‖z‖2 versus ρ‖u‖2.
We illustrate the various choices through an example application.

Example 2.5 Thrust vectored aircraft
Consider the thrust vectored aircraft example introduced in ÅM08, Exam-
ple 2.9. The system is shown in Figure 2.3, reproduced from ÅM08. The
linear quadratic regulator problem was illustrated in Example 6.8, where
the weights were chosen as Qx = I and Qu = ρI. Figure 2.4 reproduces the
step response for this case.x

A more physically motivated weighted can be computing by specifying
the comparable errors in each of the states and adjusting the weights ac-
cordingly. Suppose, for example that we consider a 1 cm error in x, a 10 cm
error in y and a 5◦ error in θ to be equivalently bad. In addition, we wish
to penalize the forces in the sidewards direction since these results in a loss
in efficiency. This can be accounted for in the LQR weights be choosing

Qx =

2

6

6

6

6

6

6

4

100
1

2π/9
0

0
0

3

7

7

7

7

7

7

5

, Qu = 0.1 ×

»

1 0
0 10

–

.

2.6. ADVANCED TOPICS 30

0 2 4 6 8 10
0

0.5

1

1.5

Time t [s]

P
os

it
io

n
x
,
y

[m
] x

y

(a) Step response in x and y

0 2 4 6 8 10
0

0.5

1

1.5

rho = 0.1
rho = 1
rho = 10

Time t [s]

P
os

it
io

n
x
,
y

[m
]

(b) Effect of control weight ρ

Figure 2.4: Step response for a vectored thrust aircraft. The plot in (a) shows
the x and y positions of the aircraft when it is commanded to move 1 m in each
direction. In (b) the x motion is shown for control weights ρ = 1, 102, 104. A higher
weight of the input term in the cost function causes a more sluggish response.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x
y

(a) Step response in x and y
0 5 10 15

0

1

2

3

4

u1
u2

(b) Inputs for the step response

Figure 2.5: Step response for a vector thrust aircraft using physically motivated
LQR weights.

The results of this choice of weights are shown in Figure 2.5. ∇

2.6 Advanced Topics

General quadratic cost functions.

ẋ = Ax + Bu J =

∫ ∞

0

L(x,u)
︷ ︸︸ ︷(
xT Qxx + uT Quu + xT Su

)
dt,

where the S term is almost always left out.

Singular extremals. The necessary conditions in the maximum principle
enforce the constraints through the of the Lagrange multipliers λ(t). In
some instances, we can get an extremal curve that has one or more of the
λ’s identically equal to zero. This corresponds to a situation in which the
constraint is satisfied strictly through the minimization of the cost function

2.7. FURTHER READING 31

and does not need to be explicitly enforced. We illustrate this case through
an example.

Example 2.6 Nonholonomic integrator
Consider the minimum time optimization problem for the nonholonomic
integrator introduced in Example 1.2 with input constraints |ui| ≤ 1. The
Hamiltonian for the system is given by

H = 1 + λ1u1 + λ2u2 + λ3x2u1

and the resulting equations for the Lagrange multipliers are

λ̇1 = 0, λ̇2 = λ3x2, λ̇3 = 0. (2.6)

It follows from these equations that λ1 and λ3 are constant. To find the
input u corresponding to the extremal curves, we see from the Hamiltonian
that

u1 = −sgn(λ1 + λ3x2u1), u2 = −sgnλ2.

These equations are well-defined as long as the arguments of sgn() are non-
zero and we get switching of the inputs when the arguments pass through
0.

An example of an abnormal extremal is the optimal trajectory between
x0 = (0, 0, 0) to xf = (ρ, 0, 0) where ρ > 0. The minimum time trajectory
is clearly given by moving on a straight line with u1 = 1 and u2 = 0. This
extremal satisfies the necessary conditions but with λ2 ≡ 0, so that the
“constraint” that ẋ2 = u2 is not strictly enforced through the Lagrange
multipliers. ∇

Abnormal extremals.

2.7 Further Reading

There are a number of excellent books on optimal control. One of the first
(and best) is the book by Pontryagin et al. [PBGM62]. During the 1960s and
1970s a number of additional books were written that provided many ex-
amples and served as standard textbooks in optimal control classes. Athans
and Falb [AF06] and Bryson and Ho [BH75] are two such texts. A very
elegant treatment of optimal control from the point of view of optimization
over general linear spaces is given by Luenberger [Lue97]. Finally, a modern
engineering textbook that contains a very compact and concise derivation of
the key results in optimal control is the book by Lewis and Syrmos [LS95].

Exercises

2.1 (a) Let G1, G2, . . . , Gk be a set of row vectors on a Rn. Let F be
another row vector on Rn such that for every x ∈ Rn satisfying Gix = 0,

2.7. FURTHER READING 32

i = 1, . . . , k, we have Fx = 0. Show that there are constants λ1,λ2, . . . ,λk

such that

F =
k∑

i=1

λkGk.

(b) Let x∗ ∈ Rn be an the extremal point (maximum or minimum) of a
function f subject to the constraints gi(x) = 0, i = 1, . . . , k. Assuming that
the gradients ∂gi(x∗)/∂x are linearly independent, show that there are k
scalers λk, i = 1, . . . , n such that the function

f̃(x) = f(x) +
n∑

i=1

λigi(x)

has an extremal point at x∗.

2.2 Consider the following control system

q̇ = u

Ẏ = quT − uqT

where u ∈ Rm and Y ∈ realsm×m is a skew symmetric matrix.

(a) For the fixed end point problem, derive the form of the optimal controller
minimizing the following integral

1

2

∫ 1

0
uT u dt.

(b) For the boundary conditions q(0) = q(1) = 0, Y (0) = 0 and

Y (1) =




0 −y3 y2

y3 0 −y1

−y2 y1 0





for some y ∈ R3, give an explicit formula for the optimal inputs u.

(c) (Optional) Find the input u to steer the system from (0, 0) to (0, Ỹ) ∈
Rm × Rm×m where Ỹ T = −Ỹ .

(Hint: if you get stuck, there is a paper by Brockett on this problem.)

2.3 In this problem, you will use the maximum principle to show that the
shortest path between two points is a straight line. We model the problem
by constructing a control system

ẋ = u

where x ∈ R2 is the position in the plane and u ∈ R2 is the velocity vector
along the curve. Suppose we wish to find a curve of minimal length con-
necting x(0) = x0 and x(1) = xf . To minimize the length, we minimize the

2.7. FURTHER READING 33

integral of the velocity along the curve,

J =

∫ 1

0

√
‖ẋ‖ dt,

subject to to the initial and final state constraints. Use the maximum prin-
ciple to show that the minimal length path is indeed a straight line at maxi-
mum velocity. (Hint: minimizing

√
‖ẋ‖ is the same as minimizing ẋT ẋ; this

will simplify the algebra a bit.)

2.4 Consider the optimal control problem for the system

ẋ = −ax + bu

where x = R is a scalar state, u ∈ R is the input, the initial state x(t0) is
given, and a, b ∈ R are positive constants. (Note that this system is not
quite the same as the one in Example 2.2.) The cost function is given by

J = 1
2

∫ tf

t0

u2(t) dt + 1
2cx2(tf),

where the terminal time tf is given and c is a constant.

(a) Solve explicitly for the optimal control u∗(t) and the corresponding state
x∗(t) in terms of t0, tf , x(t0) and t and describe what happens to the terminal
state x∗(tf) as c → ∞.

(b) Show that the system is differentially flat with appropriate choice of
output(s) and compute the state and input as a function of the flat output(s).

(c) Using the polynomial basis {tk, k = 0, . . . , M − 1} with an appropriate
choice of M , solve for the (non-optimal) trajectory between x(t0) and x(tf).
Your answer should specify the explicit input ud(t) and state xd(t) in terms
of t0, tf , x(t0), x(tf) and t.

(d) Let a = 1 and c = 1. Use your solution to the optimal control problem
and the flatness-based trajectory generation to find a trajectory between
x(0) = 0 and x(1) = 1. Plot the state and input trajectories for each
solution and compare the costs of the two approaches.

(e) (Optional) Suppose that we choose more than the minimal number of
basis functions for the differentially flat output. Show how to use the ad-
ditional degrees of freedom to minimize the cost of the flat trajectory and
demonstrate that you can obtain a cost that is closer to the optimal.

2.5 Consider the optimal control problem for the system

ẋ = −ax3 + bu

where x = R is a scalar state, u ∈ R is the input, the initial state x(t0) is
given, and a, b ∈ R are positive constants. The cost function is given by

J = 1
2

∫ tf

t0

u2(t) dt + 1
2cx2(tf),

2.7. FURTHER READING 34

where the terminal time tf is given and c is a constant.

(a) Derive a set of differential equations for the optimal control u∗(t) and the
corresponding state x∗(t) in terms of t0, tf , x(t0) and t. Be sure to provide
any initial or final conditions required for your equations to be solved.

(b) Show that the system is differentially flat with appropriate choice of
output(s) and compute the state and input as a function of the flat output(s).

(c) Using the polynomial basis {tk, k = 0, . . . , M − 1} with an appropriate
choice of M , solve for the (non-optimal) trajectory between x(t0) and x(tf).
Your answer should specify the explicit input ud(t) and state xd(t) in terms
of t0, tf , x(t0), x(tf) and t.

(d) Increase M by one and show how to choose the free parameter to min-
imize the cost function.

2.6 Consider the problem of moving a two-wheeled mobile robot (eg, a
Segway) from one position and orientation to another. The dynamics for
the system is given by the nonlinear differential equation

ẋ = cos θ v

ẏ = sin θ v

θ̇ = ω

where (x, y) is the position of the rear wheels, θ is the angle of the robot
with respect to the x axis, v is the forward velocity of the robot and ω is
spinning rate. We wish to choose an input (v,ω) that minimizes the time
that it takes to move between two configurations (x0, y0, θ0) and (xf , yf , θf),
subject to input constraints |v| ≤ L and |ω| ≤ M .

Use the maximum principle to show that any optimal trajectory consists
of segments in which the robot is traveling at maximum velocity in either the
forward or reverse direction, and going either straight, hard left (ω = −M)
or hard right (ω = +M).

Note: one of the cases is a bit tricky and can’t be completely proven with
the tools we have learned so far. However, you should be able to show the
other cases and verify that the tricky case is possible.

2.7 Consider a linear system with input u and output y and suppose we
wish to minimize the quadratic cost function

J =

∫ ∞

0

(
yT y + ρuT u

)
dt.

Show that if the corresponding linear system is observable, then the closed
loop system obtained by using the optimal feedback u = −Kx is guaranteed
to be stable.

2.7. FURTHER READING 35

2.8 Consider the control system transfer function

H(s) =
s + b

s(s + a)
a, b > 0

with state space representation

ẋ =

[
0 1
0 −a

]
x +

[
0
1

]
u

y =
[

b 1
]
x

and performance criterion

V =

∫ ∞

0
(x2

1 + u2)dt.

(a) Let

P =

[
p11 p12

p21 p22

]

with p12 = p21 and P > 0 (positive definite). Write the steady state Riccati
equation as a system of four explicit equations in terms of the elements of
P and the constants a and b.

(b) Find the gains for the optimal controller assuming the full state is avail-
able for feedback.

(c) Find the closed loop natural frequency and damping ratio.

2.9 Consider the optimal control problem for the system

ẋ = ax + bu J = 1
2

∫ tf

t0

u2(t) dt + 1
2cx2(tf),

where x ∈ R is a scalar state, u ∈ R is the input, the initial state x(t0) is
given, and a, b ∈ R are positive constants. We take the terminal time tf as
given and let c > 0 be a constant that balances the final value of the state
with the input required to get to that position. The optimal is derived in
the lecture notes for week 6 and is shown to be

u∗(t) = −
2abc ea(2tf−to−t)x(to)

2a − b2c
(
1 − e2a(tf−to)

)

x∗(t) = x(to)e
a(t−to) +

b2c ea(tf−to)x(to)

2a − b2c
(
1 − e2a(tf−to)

)
[
ea(tf−t) − ea(t+tf−2to)

]
.

(2.7)
Now consider the infinite horizon cost

J = 1
2

∫ ∞

t0

u2(t) dt

with x(t) at t = ∞ constrained to be zero.

2.7. FURTHER READING 36

(a) Solve for u∗(t) = −bPx∗(t) where P is the positive solution correspond-
ing to the algebraic Riccati equation. Note that this gives an explicit feed-
back law (u = −bPx).

(b) Plot the state solution of the finite time optimal controller for the fol-
lowing parameter values

a = 2 b = 0.5 x(t0) = 4

c = 0.1, 10 tf = 0.5, 1, 10

(This should give you a total of 6 curves.) Compare these to the infinite
time optimal control solution. Which finite time solution is closest to the
infinite time solution? Why?

2.10 In this problem we will explore the effect of constraints on control of
the linear unstable system given by

ẋ1 = 0.8x1 − 0.5x2 + 0.5u

ẋ2 = x1 + 0.5u

subject to the constraint that |u| ≤ a where a is a postive constant.

(a) Ignore the constraint (a = ∞) and design an LQR controller to stabilize
the system. Plot the response of the closed system from the initial condition
given by x = (1, 0).

(b) Use SIMULINK or ode45 to simulate the the system for some finite
value of a with an initial condition x(0) = (1, 0). Numerically (trial and
error) determine the smallest value of a for which the system goes unstable.

(c) Let amin(ρ) be the smallest value of a for which the system is unstable
from x(0) = (ρ, 0). Plot amin(ρ) for ρ = 1, 4, 16, 64, 256.

(d) Optional: Given a > 0, design and implement a receding horizon control
law for this system. Show that this controller has larger region of attraction
than the controller designed in part (b). (Hint: solve the finite horizon LQ
problem analytically, using the bang-bang example as a guide to handle the
input constraint.)

2.11 Consider the lateral control problem for an autonomous ground vehicle
from Example 1.1. We assume that we are given a reference trajectory
r = (xd, yd) corresponding to the desired trajectory of the vehicle. For
simplicity, we will assume that we wish to follow a straight line in the x
direction at a constant velocity vd > 0 and hence we focus on the y and θ
dynamics:

ẏ = sin θ vd

θ̇ =
1

/
tanφ vd.

We let vd = 10 m/s and / = 2 m.

2.7. FURTHER READING 37

(a) Design an LQR controller that stabilizes the position y to the origin.
Plot the step and frequency response for your controller and determine the
overshoot, rise time, bandwidth and phase margin for your design. (Hint: for
the frequency domain specifications, break the loop just before the process
dynamics and use the resulting SISO loop transfer function.)

(b) Suppose now that yd(t) is not identically zero, but is instead given by
yd(t) = r(t). Modify your control law so that you track r(t) and demonstrate
the performance of your controller on a “slalom course” given by a sinusoidal
trajectory with magnitude 1 meter and frequency 1 Hz.

Chapter 3
Receding Horizon Control

This set of notes builds on the previous two chapters and explores the use
of online optimization as a tool for control of nonlinear control. We being
with an high-level discussion of optimization-based control, refining some
of the concepts initially introduced in Chapter 1. We then describe the
technique of receding horizon control (RHC), including a proof of stability
for a particular form of receding horizon control that makes use of a control
Lyapunov function as a terminal cost. We conclude the chapter with a
detailed design example, in which we can explore some of the computational
tradeoffs in optimization-based control.

Prerequisites. Readers should be familiar with the concepts of trajectory
generation and optimal control as described in Chapters 1 and 2. For the
proof of stability for the receding horizon controller that we use, familiarity
with Lyapunov stability analysis at the level given in ÅM08, Chapter 4
(Dynamic Behavior) is required.

3.1 Optimization-Based Control

Optimization-based control refers to the use of online, optimal trajectory
generation as a part of the feedback stabilization of a (typically nonlinear)
system. The basic idea is to use a receding horizon control technique: a
(optimal) feasible trajectory is computed from the current position to the
desired position over a finite time T horizon, used for a short period of
time δ < T , and then recomputed based on the new position. Development
and application of receding horizon control (also called model predictive
control, or MPC) originated in process control industries where plants being
controlled are sufficiently slow to permit its implementation. An overview of
the evolution of commercially available MPC technology is given in [QB97]
and a survey of the current state of stability theory of MPC is given in
[MRRS00].

Design approach

The basic philosophy that we propose is illustrated in Figure 3.1. We begin
with a nonlinear system, including a description of the constraint set. We
linearize this system about a representative equilibrium point and perform

3.1. OPTIMIZATION-BASED CONTROL 39

Nonlinearities

Cost Function

Linearized Model

Linear
Design

Linear Controller

Linear SystemNonlinear System
with Constraints

Model Predictive
Control

Constraints and

Figure 3.1: Optimization-based control approach.

a linear control design using standard (modern) tools. Such a design gives
provably robust performance around the equilibrium point and, more im-
portantly, allows the designer to meet a wide variety of formal and informal
performance specifications through experience and the use of sophisticated
linear design tools.

This linear control law then serves as a specification of the desired control
performance for the entire nonlinear system. We convert the control law
specification into a receding horizon control formulation, chosen such that
for the linearized system, the receding horizon controller gives comparable
performance. However, because of its use of optimization tools that can
handle nonlinearities and constraints, the receding horizon controller is able
to provide the desired performance over a much larger operating envelope
than the controller design based just on the linearization. Furthermore,
by choosing cost formulations that have certain properties, we can provide
proofs of stability for the full nonlinear system and, in some cases, the
constrained system.

The advantage of the proposed approach is that it exploits the power of
humans in designing sophisticated control laws in the absence of constraints
with the power of computers to rapidly compute trajectories that optimize
a given cost function in the presence of constraints. New advances in on-
line trajectory generation serve as an enabler for this approach and their
demonstration on representative flight control experiments shows their vi-
ability. This approach can be extended to existing nonlinear paradigms as
well, as we describe in more detail below.

A key advantage of optimization-based approaches is that they allow the
potential for customization of the controller based on changes in mission,
condition, and environment. Because the controller is solving the optimiza-
tion problem online, updates can be made to the cost function, to change
the desired operation of the system; to the model, to reflect changes in pa-
rameter values or damage to sensors and actuators; and to the constraints,

3.1. OPTIMIZATION-BASED CONTROL 40

to reflect new regions of the state space that must be avoided due to exter-
nal influences. Thus, many of the challenges of designing controllers that
are robust to a large set of possible uncertainties become embedded in the
online optimization.

A number of approaches in receding horizon control employ the use of ter-
minal state equality or inequality constraints, often together with a terminal
cost, to ensure closed loop stability. In Primbs et al. [PND99], aspects of a
stability-guaranteeing, global control Lyapunov function were used, via state
and control constraints, to develop a stabilizing receding horizon scheme.
Many of the nice characteristics of the CLF controller together with better
cost performance were realized. Unfortunately, a global control Lyapunov
function is rarely available and often not possible.

Motivated by the difficulties in solving constrained optimal control prob-
lems, we have developed an alternative receding horizon control strategy for
the stabilization of nonlinear systems [JYH01]. In this approach, closed loop
stability is ensured through the use of a terminal cost consisting of a control
Lyapunov function that is an incremental upper bound on the optimal cost
to go. This terminal cost eliminates the need for terminal constraints in the
optimization and gives a dramatic speed-up in computation. Also, questions
of existence and regularity of optimal solutions (very important for online
optimization) can be dealt with in a rather straightforward manner.

Inverse Optimality

The philosophy presented here relies on the synthesis of an optimal control
problem from specifications that are embedded in an externally generated
controller design. This controller is typically designed by standard classical
control techniques for a nominal plant, absent constraints. In this frame-
work, the controller’s performance, stability and robustness specifications
are translated into an equivalent optimal control problem and implemented
in a receding horizon fashion.

One central question that must be addressed when considering the useful-
ness of this philosophy is: Given a control law, how does one find an equiva-
lent optimal control formulation? The seminal paper by R. E. Kalman [Kal64]
lays a solid foundation for this class of problems, known as inverse optimal-
ity. In this paper, Kalman considers the class of linear time-invariant (LTI)
plants with full-state feedback and a single input variable, with an associated
cost function that is quadratic in the input and state variables. These as-
sumptions set up the well-known linear quadratic regulator (LQR) problem,
by now a staple of optimal control theory.

In Kalman’s paper, the mathematical framework behind the LQR prob-
lem is laid out, and necessary and sufficient algebraic criteria for optimality
are presented in terms of the algebraic Riccati equation, as well as in terms
of a condition on the return difference of the feedback loop. In terms of the

3.1. OPTIMIZATION-BASED CONTROL 41

LQR problem, the task of synthesizing the optimal control problem comes
down to finding the integrated cost weights Q and R given only the dy-
namical description of the plant represented by matrices A and B and of
the feedback controller represented by K. Kalman delivers a particularly
elegant frequency characterization of this map [Kal64].

There are two natural extensions of these results: extension to more
general dynamical systems and extension to more general optimal control
formulations. The contribution of this paper is the simultaneous extension
of this approach to systems with constraints along with the extension to
the more general receding horizon control framework. A first step in this
approach is extension of inverse optimal results to the finite horizon case.

It is important to note that Kalman’s results are restricted to the infinite
horizon case (T → ∞) in addition to the assumptions of linearity, time-
invariance and quadratic costs. This additional assumption is necessary to
derive the results associated with the algebraic Riccati equation (Ṗ = 0).
However, we will show that through proper application of terminal costs,
the same inverse optimality problem can be soundly addressed in the case
of finite horizon length. This problem is addressed by the authors in this
paper in the context of Kalman’s work; the review of these results will be
made mathematically explicit in the next section.

The above results can be generalized to nonlinear systems, in which one
takes a nonlinear control system and attempts to find a cost function such
that the given controller is the optimal control with respect to that cost.

The history of inverse optimal control for nonlinear systems goes back to
the early work of Moylan and Anderson [MA73]. More recently, Sepulchre
et al. [SJK97] showed that a nonlinear state feedback obtained by Son-
tag’s formula from a control Lyapunov function (CLF) is inverse optimal.
The connections of this inverse optimality result to passivity and robust-
ness properties of the optimal state feedback are discussed in Jankovic et
al. [JSK99]. The past research on inverse optimality does not consider the
constraints on control or state. However, the results on the unconstrained
inverse optimality justify the use of a more general nonlinear loss function
in the integrated cost of a finite horizon performance index combined with
a real-time optimization-based control approach that takes the constraints
into account.

Control Lyapunov Functions

For the optimal control problems that we introduce in the next section, we
will make use of a terminal cost that is also a control Lyapunov function
for vthe system. Control Lyapunov functions are an extension of standard
Lyapunov functions and were originally introduced by Sontag [Son83]. They
allow constructive design of nonlinear controllers and the Lyapunov function
that proves their stability. A more complete treatment is given in [KKK95].

3.1. OPTIMIZATION-BASED CONTROL 42

Consider a nonlinear control system

ẋ = f(x, u), x ∈ R
n, u ∈ R

m. (3.1)

Definition 3.1 (Control Lyapunov Function). A locally positive function
V : Rn → R+ is called a control Lyapunov function (CLF) for a control
system (3.1) if

inf
u∈Rm

(
∂V

∂x
f(x, u)

)
< 0 for all x)= 0.

In general, it is difficult to find a CLF for a given system. However, for
many classes of systems, there are specialized methods that can be used. One
of the simplest is to use the Jacobian linearization of the system around the
desired equilibrium point and generate a CLF by solving an LQR problem.

It is a well known result that the problem of minimizing the quadratic
performance index,

J =

∫ ∞

0
(xT (t)Qx(t) + uT Ru(t))dt subject to

ẋ = Ax + Bu,

x(0) = x0,
(3.2)

results in finding the positive definite solution of the following Riccati equa-
tion:

AT P + PA − PBR−1BT P + Q = 0 (3.3)

The optimal control action is given by

u = −R−1BT Px

and V = xT Px is a CLF for the system.
In the case of the nonlinear system ẋ = f(x, u), A and B are taken as

A =
∂f(x, u)

∂x
|(0,0) B =

∂f(x, u)

∂u
|(0,0)

where the pairs (A, B) and (Q
1

2 , A) are assumed to be stabilizable and de-
tectable respectively. Obviously the obtained CLF V (x) = xT Px will be
valid only in a region around the equilibrium (0, 0).

More complicated methods for finding control Lyapunov functions are
often required and many techniques have been developed. An overview of
some of these methods can be found in [Jad01].

Finite Horizon Optimal Control

We briefly review the problem of optimal control over a finite time horizon
as presented in Chapter 2 to establish the notation for the chapter and set
some more specific conditions required for receding horizon control. Given
an initial state x0 and a control trajectory u(·) for a nonlinear control system
ẋ = f(x, u), the state trajectory xu(·; x0) is the (absolutely continuous) curve

3.1. OPTIMIZATION-BASED CONTROL 43

in Rn satisfying

xu(t; x0) = x0 +

∫ t

0
f(xu(τ ; x0), u(τ)) dτ

for t ≥ 0.
The performance of the system will be measured by a given incremental

cost L : Rn ×Rm → R that is C2 and fully penalizes both state and control
according to

L(x, u) ≥ cq(‖x‖2 + ‖u‖2), x ∈ R
n, u ∈ R

m

for some cq > 0 and L(0, 0) = 0. It follows that the quadratic approximation
of L at the origin is positive definite,

∂L

∂x

∣∣∣∣
(0,0)

≥ cqI > 0.

To ensure that the solutions of the optimization problems of interest are
well behaved, we impose some convexity conditions. We require the set
f(x, Rm) ⊂ Rn to be convex for each x ∈ Rn. Letting p ∈ Rn represent the
co-state, we also require that the pre-Hamiltonian function u 1→ pT f(x, u)+
L(x, u) =: K(x, u, p) be strictly convex for each (x, p) ∈ Rn × Rn and that
there is a C2 function ū∗ : Rn × Rn → Rm : (x, p) 1→ ū∗(x, p) providing the
global minimum of K(x, u, p). The Hamiltonian H(x, p) := K(x, ū∗(x, p), p)
is then C2, ensuring that extremal state, co-state, and control trajectories
will all be sufficiently smooth (C1 or better). Note that these conditions are
trivially satisfied for control affine f and quadratic L.

The cost of applying a control u(·) from an initial state x over the infinite
time interval [0,∞) is given by

J∞(x, u(·)) =

∫ ∞

0
L(xu(τ ; x), u(τ)) dτ .

The optimal cost (from x) is given by

J∗
∞(x) = inf

u(·)
J∞(x, u(·))

where the control functions u(·) belong to some reasonable class of admissible
controls (e.g., piecewise continuous or measurable). The function x 1→ J∗

∞(x)
is often called the optimal value function for the infinite horizon optimal
control problem.

For the class of f and L considered, we know that J∗
∞(·) is a positive

definite C2 function on a neighborhood of the origin. This follows from the
geometry of the corresponding Hamiltonian system (see [HO01] and the ref-
erences therein). In particular, since (x, p) = (0, 0) is a hyperbolic critical
point of the C1 Hamiltonian vector field XH(x, p) := (D2H(x, p),−D1H(x, p))T ,
the local properties of J∗

∞(·) are determined by the linear-quadratic approx-
imation to the problem and, moreover, D2J∗

∞(0) = P > 0 where P is the

3.1. OPTIMIZATION-BASED CONTROL 44

stabilizing solution of the appropriate algebraic Riccati equation.
For practical purposes, we are interested in finite horizon approximations

of the infinite horizon optimization problem. In particular, let V (·) be a
nonnegative C2 function with V (0) = 0 and define the finite horizon cost
(from x using u(·)) to be

JT (x, u(·)) =

∫ T

0
L(xu(τ ; x), u(τ)) dτ + V (xu(T ; x)) (3.4)

and denote the optimal cost (from x) as

J∗
T (x) = inf

u(·)
JT (x, u(·)) .

As in the infinite horizon case, one can show, by geometric means, that J∗
T (·)

is locally smooth (C2). Other properties will depend on the choice of V and
T .

Let Γ∞ denote the domain of J∗
∞(·) (the subset of Rn on which J∗

∞ is
finite). It is not too difficult to show that the cost functions J∗

∞(·) and
J∗

T (·), T ≥ 0, are continuous functions on Γ∞ [Jad01]. For simplicity, we
will allow J∗

∞(·) to take values in the extended real line so that, for instance,
J∗
∞(x) = +∞ means that there is no control taking x to the origin.

We will assume that f and L are such that the minimum value of the
cost functions J∗

∞(x), J∗
T (x), T ≥ 0, is attained for each (suitable) x. That

is, given x and T > 0 (including T = ∞ when x ∈ Γ∞), there is a (C1 in t)
optimal trajectory (x∗

T (t; x), u∗
T (t; x)), t ∈ [0, T], such that JT (x, u∗

T (·; x)) =
J∗

T (x). For instance, if f is such that its trajectories can be bounded on
finite intervals as a function of its input size, e.g., there is a continuous
function β such that ‖xu(t; x0)‖ ≤ β(‖x0‖, ‖u(·)‖L1[0,t]), then (together with
the conditions above) there will be a minimizing control (cf. [LM67]). Many
such conditions may be used to good effect; see [Jad01] for a more complete
discussion.

It is easy to see that J∗
∞(·) is proper on its domain so that the sub-level

sets
Γ∞

r := {x ∈ Γ∞ : J∗
∞(x) ≤ r2}

are compact and path connected and moreover Γ∞ =
⋃

r≥0 Γ
∞
r . Note also

that Γ∞ may be a proper subset of Rn since there may be states that cannot
be driven to the origin. We use r2 (rather than r) here to reflect the fact
that our incremental cost is quadratically bounded from below. We refer to
sub-level sets of J∗

T (·) and V (·) using

ΓT
r := path connected component of {x ∈ Γ∞ : J∗

T (x) ≤ r2} containing 0,

and

Ωr := path connected component of {x ∈ R
n : V (x) ≤ r2} containing 0.

3.2. RECEDING HORIZON CONTROL WITH CLF TERMINAL COST 45

These results provide the technical framework needed for receding hori-
zon control.

3.2 Receding Horizon Control with CLF Terminal Cost

In receding horizon control, a finite horizon optimal control problem is
solved, generating an open-loop state and control trajectories. The resulting
control trajectory is then applied to the system for a fraction of the horizon
length. This process is then repeated, resulting in a sampled data feedback
law. Although receding horizon control has been successfully used in the
process control industry, its application to fast, stability critical nonlinear
systems has been more difficult. This is mainly due to two issues. The
first is that the finite horizon optimizations must be solved in a relatively
short period of time. Second, it can be demonstrated using linear examples
that a naive application of the receding horizon strategy can have disas-
trous effects, often rendering a system unstable. Various approaches have
been proposed to tackle this second problem; see [MRRS00] for a compre-
hensive review of this literature. The theoretical framework presented here
also addresses the stability issue directly, but is motivated by the need to
relax the computational demands of existing stabilizing MPC formulations.

Receding horizon control provides a practical strategy for the use of
model information through on-line optimization. Every δ seconds, an op-
timal control problem is solved over a T second horizon, starting from the
current state. The first δ seconds of the optimal control u∗

T (·; x(t)) is then
applied to the system, driving the system from x(t) at current time t to
x∗

T (δ, x(t)) at the next sample time t + δ (assuming no model uncertainty).
We denote this receding horizon scheme as RH(T, δ).

In defining (unconstrained) finite horizon approximations to the infinite
horizon problem, the key design parameters are the terminal cost function
V (·) and the horizon length T (and, perhaps also, the increment δ). What
choices will result in success?

It is well known (and easily demonstrated with linear examples), that
simple truncation of the integral (i.e., V (x) ≡ 0) may have disastrous effects
if T > 0 is too small. Indeed, although the resulting value function may be
nicely behaved, the “optimal” receding horizon closed loop system can be
unstable.

A more sophisticated approach is to make good use of a suitable terminal
cost V (·). Evidently, the best choice for the terminal cost is V (x) = J∗

∞(x)
since then the optimal finite and infinite horizon costs are the same. Of
course, if the optimal value function were available there would be no need
to solve a trajectory optimization problem. What properties of the optimal
value function should be retained in the terminal cost? To be effective,
the terminal cost should account for the discarded tail by ensuring that the

3.2. RECEDING HORIZON CONTROL WITH CLF TERMINAL COST 46

origin can be reached from the terminal state xu(T ; x) in an efficient manner
(as measured by L). One way to do this is to use an appropriate control
Lyapunov function which is also an upper bound on the cost-to-go.

The following theorem shows that the use of a particular type of CLF is
in fact effective, providing rather strong and specific guarantees.

Theorem 3.1. [JYH01] Suppose that the terminal cost V (·) is a control
Lyapunov function such that

min
u∈Rm

(V̇ + L)(x, u) ≤ 0 (3.5)

for each x ∈ Ωrv
for some rv > 0. Then, for every T > 0 and δ ∈ (0, T],

the resulting receding horizon trajectories go to zero exponentially fast. For
each T > 0, there is an r̄(T) ≥ rv such that ΓT

r̄(T) is contained in the region

of attraction of RH(T, δ). Moreover, given any compact subset Λ of Γ∞,
there is a T ∗ such that Λ ⊂ ΓT

r̄(T) for all T ≥ T ∗.

Theorem 3.1 shows that for any horizon length T > 0 and any sampling
time δ ∈ (0, T], the receding horizon scheme is exponentially stabilizing
over the set ΓT

rv
. For a given T , the region of attraction estimate is en-

larged by increasing r beyond rv to r̄(T) according to the requirement that
V (x∗

T (T ; x)) ≤ r2
v on that set. An important feature of the above result is

that, for operations with the set ΓT
r̄(T), there is no need to impose stability

ensuring constraints which would likely make the online optimizations more
difficult and time consuming to solve.

Sketch of proof. Let xu(τ ; x) represent the state trajectory at time τ start-
ing from initial state x and applying a control trajectory u(·), and let
(x∗

T , u∗
T)(·, x) represent the optimal trajectory of the finite horizon, opti-

mal control problem with horizon T . Assume that x∗
T (T ; x) ∈ Ωr for some

r > 0. Then for any δ ∈ [0, T] we want to show that the optimal cost
x∗

T (δ; x) satisfies

J∗
T

(
x∗

T (δ; x)
)
≤ J∗

T (x) −
∫ δ

0
q
(
L(x∗

T (τ ; x), u∗
T (τ ; x)) dτ. (3.6)

This expression says that solution to the finite-horizon, optimal control prob-
lem starting at time t = δ has cost that is less than the cost of the solution
from time t = 0, with the initial portion of the cost subtracted off.. In other
words, we are closer to our solution by a finite amount at each iteration of
the algorithm. It follows using Lyapunov analysis that we must converge
to the zero cost solution and hence our trajectory converges to the desired
terminal state (given by the minimum of the cost function).

To show equation (3.6) holds, consider a trajectory in which we apply
the optimal control for the first T seconds and then apply a closed loop
controller using a stabilizing feedback u = −k(x) for another T seconds.
(The stabilizing compensator is guaranteed to exist since V is a control

3.2. RECEDING HORIZON CONTROL WITH CLF TERMINAL COST 47

Lyapunov function.) Let (x∗
T , u∗

T)(t; x), t ∈ [0, T] represent the optimal
control and (xk, uk)(t − T ; x∗

T (T ; x)), t ∈ [T, 2T] represent the control with
u = −k(x) applied where k satisfies (V̇ + L)(x,−k(x)) ≤ 0. Finally, let
(x̃(t), ũ(t)), t ∈ [0, 2T] represent the trajectory obtained by concatenating
the optimal trajectory (x∗

T , u∗
T) with the CLF trajectory (xk, uk).

We now proceed to show that the inequality (??) holds. The cost of
using ũ(·) for the first T seconds starting from the initial state x∗

T (δ; x)),
δ ∈ [0, , T] is given by

JT (x∗
T (δ; x), ũ(·)) =

∫ T+δ

δ

L(x̃(τ), ũ(τ)) dτ + V (x̃(T + δ))

= J∗
T (x) −

∫ δ

0
L(x∗

T (τ ; x), u∗
T (τ ; x)) dτ − V (x∗

T (T ; x))

+

∫ T+δ

T

L(x̃(τ), ũ(τ)) dτ + V (x̃(T + δ)).

Note that the second line is simply a rewriting of the integral in terms of
the optimal cost J∗

T with the necessary additions and subtractions of the
additional portions of the cost for the interval [δ, T + δ]. We can how use
the bound

L(x̃(τ), ũ(τ)) ≤ V̇ (x̃(τ), ũ(τ), τ ∈ [T, 2T],

which follows from the definition of the CLF V and stabilizing controller
k(x). This allows us to write

JT (x∗
T (δ; x), ũ(·)) ≤ J∗

T (x) −
∫ δ

0
L(x∗

T (τ ; x), u∗
T (τ ; x)) dτ − V (x∗

T (T ; x))

−
∫ T+δ

T

V̇ (x̃(τ), ũ(τ)) dτ + V (x̃(T + δ))

= J∗
T (x) −

∫ δ

0
L(x∗

T (τ ; x), u∗
T (τ ; x)) dτ − V (x∗

T (T ; x))

− V (x̃(τ))
∣∣∣
T+δ

T
+ V (x̃(T + δ))

= J∗
T (x) −

∫ δ

0
L(x∗

T (τ ; x), u∗
T (τ ; x)).

Finally, using the optimality of u∗
T we have that J∗

T (x∗
T (δ; x)) ≤ JT (x∗

T (δ; x), ũ(·))
we obtain equation (3.6).

An important benefit of receding horizon control is its ability to handle
state and control constraints. While the above theorem provides stability
guarantees when there are no constraints present, it can be modified to
include constraints on states and controls as well. In order to ensure stability
when state and control constraints are present, the terminal cost V (·) should
be a local CLF satisfying minu∈U V̇ + L(x, u) ≤ 0 where U is the set of

3.3. RECEDING HORIZON CONTROL USING DIFFERENTIAL FLATNESS 48

controls where the control constraints are satisfied. Moreover, one should
also require that the resulting state trajectory xCLF (·) ∈ X , where X is
the set of states where the constraints are satisfied. (Both X and U are
assumed to be compact with origin in their interior). Of course, the set Ωrv

will end up being smaller than before, resulting in a decrease in the size of
the guaranteed region of operation (see [MRRS00] for more details).

3.3 Receding Horizon Control Using Differential Flatness

In this section we demonstrate how to use differential flatness to find fast
numerical algorithms for solving the optimal control problems required for
the receding horizon control results of the previous section. We consider the
affine nonlinear control system

ẋ = f(x) + g(x)u, (3.7)

where all vector fields and functions are smooth. For simplicity, we focus on
the single input case, u ∈ R. We wish to find a trajectory of equation (3.7)
that minimizes the performance index (3.4), subject to a vector of initial,
final, and trajectory constraints

lb0 ≤ ψ0(x(t0), u(t0)) ≤ ub0,

lbf ≤ ψf (x(tf), u(tf)) ≤ ubf ,

lbt ≤ S(x, u) ≤ ubt,

(3.8)

respectively. For conciseness, we will refer to this optimal control problem
as

min
(x,u)

J(x, u) subject to

{
ẋ = f(x) + g(x)u,

lb ≤ c(x, u) ≤ ub.
(3.9)

Numerical Solution Using Collocation

A numerical approach to solving this optimal control problem is to use the
direct collocation method outlined in Hargraves and Paris [HP87]. The idea
behind this approach is to transform the optimal control problem into a
nonlinear programming problem. This is accomplished by discretizing time
into a grid of N − 1 intervals

t0 = t1 < t2 < . . . < tN = tf (3.10)

and approximating the state x and the control input u as piecewise poly-
nomials x̂ and û, respectively. Typically a cubic polynomial is chosen
for the states and a linear polynomial for the control on each interval.
Collocation is then used at the midpoint of each interval to satisfy equa-
tion (3.7). Let x̂(x(t1), ..., x(tN)) and û(u(t1), ..., u(tN)) denote the approxi-
mations to x and u, respectively, depending on (x(t1), ..., x(tN)) ∈ RnN and
(u(t1), ..., u(tN)) ∈ RN corresponding to the value of x and u at the grid

3.3. RECEDING HORIZON CONTROL USING DIFFERENTIAL FLATNESS 49

points. Then one solves the following finite dimension approximation of the
original control problem (3.9):

min
y∈RM

F (y) = J(x̂(y), û(y)) subject to






˙̂x − f(x̂(y)) + g(x̂(y))û(y) = 0,

lb ≤ c(x̂(y), û(y)) ≤ ub,

∀t =
tj + tj+1

2
j = 1, . . . , N − 1

(3.11)
where y = (x(t1), u(t1), . . . , x(tN), u(tN)), and M = dim y = (n + 1)N .

Seywald [Sey94] suggested an improvement to the previous method (see
also [Bry99, p. 362]). Following this work, one first solves a subset of system
dynamics in equation (3.9) for the the control in terms of combinations of
the state and its time derivative. Then one substitutes for the control in the
remaining system dynamics and constraints. Next all the time derivatives
ẋi are approximated by the finite difference approximations

˙̄x(ti) =
x(ti+1) − x(ti)

ti+1 − ti

to get
p(˙̄x(ti), x(ti)) = 0
q(˙̄x(ti), x(ti)) ≤ 0

}
i = 0, ..., N − 1.

The optimal control problem is turned into

min
y∈RM

F (y) subject to

{
p(˙̄x(ti), x(ti)) = 0

q(˙̄x(ti), x(ti)) ≤ 0
(3.12)

where y = (x(t1), . . . , x(tN)), and M = dim y = nN . As with the Hargraves
and Paris method, this parameterization of the optimal control problem (3.9)
can be solved using nonlinear programming.

The dimensionality of this discretized problem is lower than the dimen-
sionality of the Hargraves and Paris method, where both the states and the
input are the unknowns. This induces substantial improvement in numerical
implementation.

Differential Flatness Based Approach

The results of Seywald give a constrained optimization problem in which
we wish to minimize a cost functional subject to n− 1 equality constraints,
corresponding to the system dynamics, at each time instant. In fact, it is
usually possible to reduce the dimension of the problem further. Given an
output, it is generally possible to parameterize the control and a part of the
state in terms of this output and its time derivatives. In contrast to the
previous approach, one must use more than one derivative of this output for
this purpose.

When the whole state and the input can be parameterized with one

3.3. RECEDING HORIZON CONTROL USING DIFFERENTIAL FLATNESS 50

zj(to)

knotpoint

mj at knotpoints defines smoothness

collocation point

kj − 1 degree polynomial between knotpoints

zj(t)

zj(tf)

Figure 3.2: Spline representation of a variable.

output, the system is differentially flat, as described in Section 1.3. When
the parameterization is only partial, the dimension of the subspace spanned
by the output and its derivatives is given by r the relative degree of this
output [Isi89]. In this case, it is possible to write the system dynamics as

x = α(z, ż, . . . , z(q))

u = β(z, ż, . . . , z(q))

Φ(z, ż, . . . , zn−r) = 0

(3.13)

where z ∈ Rp, p > m represents a set of outputs that parameterize the
trajectory and Φ : Rn×Rm represents n−r remaining differential constraints
on the output. In the case that the system is flat, r = n and we eliminate
these differential constraints.

Unlike the approach of Seywald, it is not realistic to use finite difference
approximations as soon as r > 2. In this context, it is convenient to represent
z using B-splines. B-splines are chosen as basis functions because of their
ease of enforcing continuity across knot points and ease of computing their
derivatives. A pictorial representation of such an approximation is given in
Figure 3.2. Doing so we get

zj =

pj∑

i=1

Bi,kj
(t)Cj

i , pj = lj(kj − mj) + mj

where Bi,kj
(t) is the B-spline basis function defined in [dB78] for the output

zj with order kj , Cj
i are the coefficients of the B-spline, lj is the number

of knot intervals, and mj is number of smoothness conditions at the knots.
The set (z1, z2, . . . , zn−r) is thus represented by M =

∑
j∈{1,r+1,...,n} pj co-

efficients.
In general, w collocation points are chosen uniformly over the time in-

terval [to, tf] (though optimal knots placements or Gaussian points may

3.4. IMPLEMENTATION ON THE CALTECH DUCTED FAN 51

also be considered). Both dynamics and constraints will be enforced at the
collocation points. The problem can be stated as the following nonlinear
programming form:

min
y∈RM

F (y) subject to

{
Φ(z(y), ż(y), . . . , z(n−r)(y)) = 0

lb ≤ c(y) ≤ ub
(3.14)

where

y = (C1
1 , . . . , C1

p1
, Cr+1

1 , . . . , Cr+1
pr+1

, . . . , Cn
1 , . . . , Cn

pn
).

The coefficients of the B-spline basis functions can be found using nonlinear
programming.

A software package called Nonlinear Trajectory Generation (NTG) has
been written to solve optimal control problems in the manner described
above (see [MMM00] for details). The sequential quadratic programming
package NPSOL by [GMSW] is used as the nonlinear programming solver in
NTG. When specifying a problem to NTG, the user is required to state the
problem in terms of some choice of outputs and its derivatives. The user is
also required to specify the regularity of the variables, the placement of the
knot points, the order and regularity of the B-splines, and the collocation
points for each output.

3.4 Implementation on the Caltech Ducted Fan

To demonstrate the use of the techniques described in the previous section,
we present an implementation of optimization-based control on the Caltech
Ducted Fan, a real-time, flight control experiment that mimics the longitu-
dinal dynamics of an aircraft. The experiment is show in Figure 3.3.

Description of the Caltech Ducted Fan Experiment

The Caltech ducted fan is an experimental testbed designed for research
and development of nonlinear flight guidance and control techniques for
Uninhabited Combat Aerial Vehicles (UCAVs). The fan is a scaled model
of the longitudinal axis of a flight vehicle and flight test results validate that
the dynamics replicate qualities of actual flight vehicles [MM99].

The ducted fan has three degrees of freedom: the boom holding the
ducted fan is allowed to operate on a cylinder, 2 m high and 4.7 m in diam-
eter, permitting horizontal and vertical displacements. Also, the wing/fan
assembly at the end of the boom is allowed to rotate about its center of
mass. Optical encoders mounted on the ducted fan, gearing wheel, and the
base of the stand measure the three degrees of freedom. The fan is con-
trolled by commanding a current to the electric motor for fan thrust and by
commanding RC servos to control the thrust vectoring mechanism.

3.4. IMPLEMENTATION ON THE CALTECH DUCTED FAN 52

Figure 3.3: Caltech ducted fan.

The sensors are read and the commands sent by a dSPACE multi-processor
system, comprised of a D/A card, a digital I/O card, two Texas Instruments
C40 signal processors, two Compaq Alpha processors, and a ISA bus to in-
terface with a PC. The dSPACE system provides a real-time interface to the
4 processors and I/O card to the hardware. The NTG software resides on
both of the Alpha processors, each capable of running real-time optimiza-
tion.

The ducted fan is modeled in terms of the position and orientation of the
fan, and their velocities. Letting x represent the horizontal translation, z the
vertical translation and θ the rotation about the boom axis, the equations
of motion are given by

mẍ + FXa
− FXb

cos θ − FZb
sin θ = 0

mz̈ + FZa
+ FXb

sin θ − FZb
cos θ = mgeff

J θ̈ − Ma +
1

rs
IpΩẋ cos θ − FZb

rf = 0,

(3.15)

where FXa
= D cos γ+ L sin γ and FZa

= −D sin γ+ L cos γ are the aerody-
namic forces and FXb

and FZb
are thrust vectoring body forces in terms of

3.4. IMPLEMENTATION ON THE CALTECH DUCTED FAN 53

the lift (L), drag (D), and flight path angle (γ). Ip and Ω are the moment
of inertia and angular velocity of the ducted fan propeller, respectively. J is
the moment of ducted fan and rf is the distance from center of mass along
the Xb axis to the effective application point of the thrust vectoring force.
The angle of attack α can be derived from the pitch angle θ and the flight
path angle γ by

α = θ − γ.

The flight path angle can be derived from the spatial velocities by

γ = arctan
−ż

ẋ
.

The lift (L) ,drag (D), and moment (M) are given by

L = qSCL(α) D = qSCD(α) M = c̄SCM (α),

respectively. The dynamic pressure is given by q = 1
2ρV

2. The norm of
the velocity is denoted by V , S the surface area of the wings, and ρ is the
atmospheric density. The coefficients of lift (CL(α)), drag (CD(α)) and the
moment coefficient (CM (α)) are determined from a combination of wind
tunnel and flight testing and are described in more detail in [MM99], along
with the values of the other parameters.

Real-Time Trajectory Generation

In this section we demonstrate the trajectory generation results by using
NTG to generate minimum time trajectories in real time. An LQR-based
regulator is used to stabilize the system, allow us to focus on the trajec-
tory generation properties. We focus in this section on aggressive, forward
flight trajectories. The next section extends the controller to use a receding
horizon controller, but on a simpler class of trajectories.

Stabilization Around Reference Trajectory

The results in this section rely on the traditional two degree of freedom
design paradigm described in the Introduction. In this approach, a local
control law (inner loop) is used to stabilize the system around the trajectory
computed based on a nominal model. This compensates for uncertainties
in the model, which are predominantly due to aerodynamics and friction.
Elements such as the ducted fan flying through its own wake, ground ef-
fects, and thrust not modeled as a function of velocity and angle of attack
contribute to the aerodynamic uncertainty. The friction in the vertical di-
rection is also not considered in the model. The prismatic joint has an
unbalanced load creating an effective moment on the bearings. The vertical
frictional force of the ducted fan stand varies with the vertical acceleration
of the ducted fan as well as the forward velocity. Actuation models are not

3.4. IMPLEMENTATION ON THE CALTECH DUCTED FAN 54

used when generating the reference trajectory, resulting in another source
of uncertainty.

Since only the position of the fan is measured, we must estimate the
velocities. We use an extended Kalman filter with the optimal gain matrix
is gain scheduled on the (estimated) forward velocity. The Kalman filter
outperformed other methods that computed the derivative using only the
position data and a filter.

The stabilizing LQR controllers were gain scheduled on pitch angle, θ,
and the forward velocity, ẋ. The pitch angle was allowed to vary from −π/2
to π/2 and the velocity ranged from 0 to 6 m/s. The weights were chosen
differently for the hover-to-hover and forward flight modes. For the forward
flight mode, a smaller weight was placed on the horizontal (x) position of the
fan compared to the hover-to-hover mode. Furthermore, the z weight was
scheduled as a function of forward velocity in the forward flight mode. There
was no scheduling on the weights for hover-to-hover. The elements of the
gain matrices for each of the controller and observer are linearly interpolated
over 51 operating points.

Nonlinear Trajectory Generation Parameters

We solve a minimum time optimal control problem to generate a feasible tra-
jectory for the system. The system is modeled using the nonlinear equations
described above and computed the open loop forces and state trajectories
for the nominal system. This system is not known to be differentially flat
(due to the aerodynamic forces) and hence we cannot completely eliminate
the differential constraints.

We choose three outputs, z1 = x, z2 = z, and z3 = θ, which results
in a system with one remaining differential constraint. Each output is pa-
rameterized with four (intervals), sixth order, C4 (multiplicity), piecewise
polynomials over the time interval scaled by the minimum time. A fourth
output, z4 = T , is used to represent the time horizon to be minimized and is
parameterized by a scalar. By choosing the outputs to be parameterized in
this way, we are in effect controlling the frequency content of inputs. Since
we are not including the actuators in the model, it would be undesirable to
have inputs with a bandwidth higher than the actuators. There are a total
of 37 variables in this optimization problem. The trajectory constraints are
enforced at 21 equidistant breakpoints over the scaled time interval.

There are many considerations in the choice of the parameterization of
the outputs. Clearly there is a trade between the parameters (variables, ini-
tial values of the variables, and breakpoints) and measures of performance
(convergence, run-time, and conservative constraints). Extensive simula-
tions were run to determine the right combination of parameters to meet
the performance goals of our system.

3.4. IMPLEMENTATION ON THE CALTECH DUCTED FAN 55

110 120 130 140 150 160 170 180
−4

−2

0

2

4

6

t

x’

x’act
x’des

110 120 130 140 150 160 170 180
0

0.5

1

1.5

2

2.5

3

t

θ

θact
θdes

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12

fx

f z

constraints
desired

(a) (b)

Figure 3.4: Forward flight test case: (a) θ and ẋ desired and actual, (b) desired
FXb and FZb with bounds.

0 10 20 30 40 50 60 70 80
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

al
t (

m
)

x (m)

x vs. alt

Figure 3.5: Forward flight test case: altitude and x position (actual (solid) and
desired (dashed)). Airfoil represents actual pitch angle (θ) of the ducted fan.

Forward Flight

To obtain the forward flight test data, the operator commanded a desired
forward velocity and vertical position with the joysticks. We set the trajec-
tory update time, δ to 2 seconds. By rapidly changing the joysticks, NTG
produces high angle of attack maneuvers. Figure 3.4(a) depicts the refer-
ence trajectories and the actual θ and ẋ over 60 sec. Figure 3.4(b) shows
the commanded forces for the same time interval. The sequence of maneu-
vers corresponds to the ducted fan transitioning from near hover to forward
flight, then following a command from a large forward velocity to a large
negative velocity, and finally returning to hover.

Figure 3.5 is an illustration of the ducted fan altitude and x position for
these maneuvers. The air-foil in the figure depicts the pitch angle (θ). It
is apparent from this figure that the stabilizing controller is not tracking
well in the z direction. This is due to the fact that unmodeled frictional

3.4. IMPLEMENTATION ON THE CALTECH DUCTED FAN 56

effects are significant in the vertical direction. This could be corrected with
an integrator in the stabilizing controller.

An analysis of the run times was performed for 30 trajectories; the aver-
age computation time was less than one second. Each of the 30 trajectories
converged to an optimal solution and was approximately between 4 and
12 seconds in length. A random initial guess was used for the first NTG
trajectory computation. Subsequent NTG computations used the previous
solution as an initial guess. Much improvement can be made in determining
a “good” initial guess. Improvement in the initial guess will improve not
only convergence but also computation times.

Receding Horizon Control

The results of the previous section demonstrate the ability to compute opti-
mal trajectories in real time, although the computation time was not suffi-
ciently fast for closing the loop around the optimization. In this section, we
make use of a shorter update time δ, a fixed horizon time T with a quadratic
integral cost, and a CLF terminal cost to implement the receding horizon
controller described in Section 3.2. We also limit the operation of the system
to near hover, so that we can use the local linearization to find the terminal
CLF.

We have implemented the receding horizon controller on the ducted fan
experiment where the control objective is to stabilize the hover equilibrium
point. The quadratic cost is given by

L(x, u) =
1

2
x̂T Qx̂ +

1

2
ûT Rû

V (x) = γx̂T Px̂
(3.16)

where
x̂ = x − xeq = (x, z, θ − π/2, ẋ, ż, θ̇)

û = u − ueq = (FXb
− mg, FZb

)

Q = diag{4, 15, 4, 1, 3, 0.3}
R = diag{0.5, 0.5},

γ = 0.075 and P is the unique stable solution to the algebraic Riccati equa-
tion corresponding to the linearized dynamics of equation (1.5) at hover
and the weights Q and R. Note that if γ = 1/2, then V (·) is the CLF for
the system corresponding to the LQR problem. Instead V is a relaxed (in
magnitude) CLF, which achieved better performance in the experiment. In
either case, V is valid as a CLF only in a neighborhood around hover since
it is based on the linearized dynamics. We do not try to compute off-line a
region of attraction for this CLF. Experimental tests omitting the terminal
cost and/or the input constraints leads to instability. The results in this
section show the success of this choice for V for stabilization. An inner-loop
PD controller on θ, θ̇ is implemented to stabilize to the receding horizon

3.4. IMPLEMENTATION ON THE CALTECH DUCTED FAN 57

ti+2

time

Input

computation
(i)

computation
(i+1)

Legend

computed applied unused

δc(i) δc(i+1)

 *u (i-1) T

ti+1 ti

 *u (i) T

 *u (i+1) T
X

X X X

X X

X X

X

Figure 3.6: Receding horizon input trajectories

states θ∗T , θ̇∗T . The θ dynamics are the fastest for this system and although
most receding horizon controllers were found to be nominally stable without
this inner-loop controller, small disturbances could lead to instability.

The optimal control problem is set-up in NTG code by parameterizing
the three position states (x, z, θ), each with 8 B-spline coefficients. Over the
receding horizon time intervals, 11 and 16 breakpoints were used with hori-
zon lengths of 1, 1.5, 2, 3, 4 and 6 seconds. Breakpoints specify the locations
in time where the differential equations and any constraints must be satis-
fied, up to some tolerance. The value of Fmax

Xb
for the input constraints is

made conservative to avoid prolonged input saturation on the real hardware.
The logic for this is that if the inputs are saturated on the real hardware,
no actuation is left for the inner-loop θ controller and the system can go
unstable. The value used in the optimization is Fmax

Xb
= 9 N.

Computation time is non-negligible and must be considered when imple-
menting the optimal trajectories. The computation time varies with each
optimization as the current state of the ducted fan changes. The follow-
ing notational definitions will facilitate the description of how the timing is
set-up:

i Integer counter of MPC computations
ti Value of current time when MPC computation i started

δc(i) Computation time for computation i
u∗

T (i)(t) Optimal output trajectory corresponding to computation
i, with time interval t ∈ [ti, ti + T]

A natural choice for updating the optimal trajectories for stabilization is to
do so as fast as possible. This is achieved here by constantly resolving the
optimization. When computation i is done, computation i + 1 is immedi-
ately started, so ti+1 = ti + δc(i). Figure 3.6 gives a graphical picture of the
timing set-up as the optimal input trajectories u∗

T (·) are updated. As shown
in the figure, any computation i for u∗

T (i)(·) occurs for t ∈ [ti, ti+1] and the

3.4. IMPLEMENTATION ON THE CALTECH DUCTED FAN 58

resulting trajectory is applied for t ∈ [ti+1, ti+2]. At t = ti+1 computation
i + 1 is started for trajectory u∗

T (i + 1)(·), which is applied as soon as it is
available (t = ti+2). For the experimental runs detailed in the results, δc(i)
is typically in the range of [0.05, 0.25] seconds, meaning 4 to 20 optimal
control computations per second. Each optimization i requires the current
measured state of the ducted fan and the value of the previous optimal input
trajectories u∗

T (i − 1) at time t = ti. This corresponds to, respectively, 6
initial conditions for state vector x and 2 initial constraints on the input
vector u. Figure 3.6 shows that the optimal trajectories are advanced by
their computation time prior to application to the system. A dashed line
corresponds to the initial portion of an optimal trajectory and is not applied
since it is not available until that computation is complete. The figure also
reveals the possible discontinuity between successive applied optimal input
trajectories, with a larger discontinuity more likely for longer computation
times. The initial input constraint is an effort to reduce such discontinuities,
although some discontinuity is unavoidable by this method. Also note that
the same discontinuity is present for the 6 open-loop optimal state trajec-
tories generated, again with a likelihood for greater discontinuity for longer
computation times. In this description, initialization is not an issue because
we assume the receding horizon computations are already running prior to
any test runs. This is true of the experimental runs detailed in the results.

The experimental results show the response of the fan with each controller
to a 6 meter horizontal offset, which is effectively engaging a step-response
to a change in the initial condition for x. The following details the effects of
different receding horizon control parameterizations, namely as the horizon
changes, and the responses with the different controllers to the induced
offset.

The first comparison is between different receding horizon controllers,
where time horizon is varied to be 1.5, 2.0, 3.0, 4.0 or 6.0 seconds. Each
controller uses 16 breakpoints. Figure 3.7(a) shows a comparison of the
average computation time as time proceeds. For each second after the offset
was initiated, the data corresponds to the average run time over the previous
second of computation. Note that these computation times are substantially
smaller than those reported for real-time trajectory generation, due to the
use of the CLF terminal cost versus the terminal constraints in the minimum-
time, real-time trajectory generation experiments.

There is a clear trend toward shorter average computation times as the
time horizon is made longer. There is also an initial transient increase in
average computation time that is greater for shorter horizon times. In fact,
the 6 second horizon controller exhibits a relatively constant average com-
putation time. One explanation for this trend is that, for this particular
test, a 6 second horizon is closer to what the system can actually do. After
1.5 seconds, the fan is still far from the desired hover position and the termi-
nal cost CLF is large, likely far from its region of attraction. Figure 3.7(b)

3.5. FURTHER READING 59

0 5 10 15 20
0

0.1

0.2

0.3

0.4
Average run time for previous second of computation

seconds after initiation

av
er

ag
e

ru
n

tim
e

(s
ec

on
ds

)

T = 1.5
T = 2.0
T = 3.0
T = 4.0
T = 6.0

−5 0 5 10 15 20 25
−1

0

1

2

3

4

5

6
MPC response to 6m offset in x for various horizons

time (sec)

x
(m

)

 step ref
+ T = 1.5
o T = 2.0
* T = 3.0
x T = 4.0
 . T = 6.0

Figure 3.7: Receding horizon control: (a) moving one second average of compu-
tation time for MPC implementation with varying horizon time, (b) response of
MPC controllers to 6 meter offset in x for different horizon lengths.

shows the measured x response for these different controllers, exhibiting a
rise time of 8–9 seconds independent of the controller. So a horizon time
closer to the rise time results in a more feasible optimization in this case.

3.5 Further Reading

Exercises

3.1 Consider a nonlinear control system

ẋ = f(x, u)

with linearization
ẋ = Ax + Bu.

Show that if the linearized system is reachable, then there exists a (local)
control Lyapunov function for the nonlinear system. (Hint: use the solution
to the LQR optimal control problem for the linearized system.)

3.2 Consider the optimal control problem given in Example 2.2:

ẋ = ax + bu J = 1
2

∫ tf

t0

u2(t) dt + 1
2cx2(tf),

where x ∈ R is a scalar state, u ∈ R is the input, the initial state x(t0) is
given, and a, b ∈ R are positive constants. We take the terminal time tf
as given and let c > 0 be a constant that balances the final value of the
state with the input required to get to that position. The optimal control
for a finite time T > 0 is derived in Example 2.2. Now consider the infinite
horizon cost

J = 1
2

∫ ∞

t0

u2(t) dt

3.5. FURTHER READING 60

with x(t) at t = ∞ constrained to be zero.

(a) Solve for u∗(t) = −bPx∗(t) where P is the positive solution correspond-
ing to the algebraic Riccati equation. Note that this gives an explicit feed-
back law (u = −bPx).

(b) Plot the state solution of the finite time optimal controller for the fol-
lowing parameter values

a = 2 b = 0.5 x(t0) = 4

c = 0.1, 10 tf = 0.5, 1, 10

(This should give you a total of 6 curves.) Compare these to the infinite
time optimal control solution. Which finite time solution is closest to the
infinite time solution? Why?

Using the solution given in equation (2.7), implement the finite-time
optimal controller in a receding horizon fashion with an update time of
δ = 0.5. Using the parameter values in problem 1(b), Compare the responses
of the receding horizon controllers to the LQR controller you designed for
problem 1, from the same initial condition. What do you observe as c and
tf increase?

(Hint: you can write a MATLAB script to do this by performing the
following steps:

(i) set t0 = 0

(ii) using the closed form solution for x∗ from problem 1, plot x(t), t ∈ [t0, tf]
and save xδ = x(t0 + δ)

(iii) set x(t0) = xδ and repeat step (ii) until x is small.)

3.3 In this problem we will explore the effect of constraints on control of
the linear unstable system given by

ẋ1 = 0.8x1 − 0.5x2 + 0.5u

ẋ2 = x1 + 0.5u

subject to the constraint that |u| ≤ a where a is a postive constant.

(a) Ignore the constraint (a = ∞) and design an LQR controller to stabilize
the system. Plot the response of the closed system from the initial condition
given by x = (1, 0).

(b) Use SIMULINK or ode45 to simulate the the system for some finite
value of a with an initial condition x(0) = (1, 0). Numerically (trial and
error) determine the smallest value of a for which the system goes unstable.

(c) Let amin(ρ) be the smallest value of a for which the system is unstable
from x(0) = (ρ, 0). Plot amin(ρ) for ρ = 1, 4, 16, 64, 256.

3.5. FURTHER READING 61

(d) Optional: Given a > 0, design and implement a receding horizon control
law for this system. Show that this controller has larger region of attraction
than the controller designed in part (b). (Hint: solve the finite horizon LQ
problem analytically, using the bang-bang example as a guide to handle the
input constraint.)

Bibliography

[AF06] M. Athans and P. L. Falb. Optimal Control: An Introduction to the Theory
and Its Applications. Dover, 2006. Originally published in 1963.

[ÅM08] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008. Available at
http://www.cds.caltech.edu/∼murray/amwiki.

[BH75] A. E. Bryson, Jr. and Y.-C. Ho. Applied Optimal Control: Optimization,
Estimation, and Control. Wiley, New York, 1975.

[Bro81] R. W. Brockett. Control theory and singular Riemannian geometry. In New
Directions in Applied Mathematics, pages 11–27. Springer-Verlag, New York,
1981.

[FLMR92] M. Fliess, J. Levine, P. Martin, and P. Rouchon. On differentially flat non-
linear systems. Comptes Rendus des Séances de l’Académie des Sciences,
315:619–624, 1992. Serie I.

[KKM91] I. Kanellakopoulos, P. V. Kokotovic, and A. S. Morse. Systematic design of
adaptive controllers for feedback linearizable systems. IEEE Transactions on
Automatic Control, 36(11):1241–1253, 1991.

[LS95] F. L. Lewis and V. L. Syrmos. Optimal Control. Wiley, second edition, 1995.

[Lue97] David G. Luenberger. Optimization by Vector Space Methods. Wiley, New
York, 1997.

[MDP94] P. Martin, S. Devasia, and B. Paden. A different look at output tracking—
Control of a VTOL aircraft. Automatica, 32(1):101–107, 1994.

[Mur97] R. M. Murray. Nonlinear control of mechanical systems: A Lagrangian per-
spective. Annual Reviews in Control, 21:31–45, 1997.

[PBGM62] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko.
The Mathematical Theory of Optimal Processes. Wiley-Interscience, 1962.
(translated from Russian).

[Rug90] W. J. Rugh. Analytical framework for gain scheduling. In Proc. American
Control Conference, pages 1688–1694, 1990.

[Sha90] J. S. Shamma. Analysis of gain scheduled control for nonlinear plants. IEEE
Transactions on Automatic Control, 35(12):898–907, 1990.

[vNM98] M. J. van Nieuwstadt and R. M. Murray. Rapid hover to forward flight tran-
sitions for a thrust vectored aircraft. Journal of Guidance, Control, and Dy-
namics, 21(1):93–100, 1998.

[vNRM94] M. van Nieuwstadt, M. Rathinam, and R. M. Murray. Differential flatness and
absolute equivalence. Technical Report CIT/CDS 94-006, California Institute
of Technology, 1994. Submitted SIAM J. Control and Optimization. Available
electronically from http://cds.caltech.edu/cds/reports.

