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min
�u

J = 1
2

�xT (t)Q�x(t) + �uT (t)R�u(t)�� ��dt
0

�

�
subject to
��x(t) = F�x(t) +G�u(t)

�� �E:-95/�?E?@19?�-?�8;C�<-??�J8@1>?�
�� Frequency response of dynamic systems�
�� Shaping system response�

�� LQ regulators with output vector cost functions�
�� Implicit model-following�
�� Cost functions with augmented state vector�
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First-Order Low-Pass 
Filter�

2�



Low-Pass Filter�
 ;C�<-??�J8@1> passes low frequency signals and 

attenuates high-frequency signals�

 

�x t( ) = �ax t( ) + au t( )
a = 0.1, 1, or 10

x s( ) = a
s + a( )u s( )

x j�( ) = a
j� + a( )u j�( )

�� Laplace transform, x(0) = 0�

�� Frequency response, s = j��

3�

Response of 1st-Order Low-Pass 
Filters to Step Input and Initial 

Condition�

 

�x t( ) = �ax t( ) + au t( )
a = 0.1, 1, or 10

Smoothing effect on sharp changes� 4�



Frequency Response of 
Dynamic Systems�

5�

Response of 1st-Order Low-Pass 
Filters to Sine-Wave Inputs�

u t( ) =
sin t( )
sin 2t( )
sin 4t( )

�

�
��

�
�
�

 �x t( ) = �x t( ) + u t( )

 �x t( ) = �10x t( ) +10u t( )

 �x t( ) = �0.1x t( ) + 0.1u t( )

Input�

Output�
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Response of 1st-Order Low-
Pass Filters to White Noise�

 

�x t( ) = �ax t( ) + au t( )
a = 0.1, 1, or 10

7�

Relationship of Input Frequencies 
to Filter Bandwidth�

u t( ) =
sin �t( )
sin 2�t( )
sin 4�t( )

�

�
��

�
�
�

How do we 
calculate frequency 

response?�

BANDWIDTH�
Input frequency at 
which magnitude = 

–3dB�
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Bode Plot Asymptotes, Departures, 
and Phase Angles for 1st-Order Lags�
7� General shape of amplitude 

ratio governed by asymptotes�
7� Slope of asymptotes changes 

by multiples of ±20 dB/dec 
at poles or zeros�
7� Actual AR departs from 

asymptotes�

7� Phase angle of a real, 
negative pole�

–� When � = 0, � = 0°�
–� When � = �, � =–45°�
–� When � -> �, � -> –90°�

7� AR asymptotes of a real pole�
–� When � = 0, slope = 0 dB/

dec�
–� When � � �, slope = –20 dB/

dec�

x j�( ) = a
j� + a( )u j�( )

9�

2nd-Order Low-Pass Filter�

 ��x t( ) = �2�� n �x t( )�� n
2x t( ) +� n

2u t( )
Laplace transform, I.C. = 0�

Frequency response, s = j��

x s( ) = � n
2

s2 + 2�� ns +� n
2 u s( )

x j�( ) = � n
2

j�( )2 + 2�� n j�( ) +� n
2
u j�( )

10�



2nd-Order Step Response�

11�

Amplitude Ratio Asymptotes and 
Departures of Second-Order Bode 

Plots (No Zeros)�
7�AR asymptotes of a 

pair of complex poles�
–� When �� = 0, slope 

= 0 dB/dec�
–� When �� � ��n, 

slope = –40 dB/
dec�

7�Height of resonant 
peak depends on 
damping ratio�
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Phase Angles of Second-Order 
Bode Plots (No Zeros)�

7�Phase angle of a pair 
of complex negative 
poles�

–� When �� = 0, �� = 0°�
–� When �� = ��n, �� =–

90°�
–� When �� -> �, �� -> –

180°�
7�Abruptness of phase 

shift depends on 
damping ratio�

13�

 

�x(t) = Fx(t)+Gu(t)
y(t) = Hxx(t)+Huu(t)

Time-Domain System Equations�

Laplace Transforms of System Equations�

sx(s)� x(0) = Fx(s)+Gu(s)

x(s) = sI� F[ ]�1 x(0)+Gu(s)[ ]
y(s) = Hxx(s)+Huu(s)

Transformation of the System 
Equations �

14�



Transfer Function Matrix �

Transfer Function Matrix relates control input 
to system output �

with Hu = 0 and neglecting initial condition�

  HH (s) = Hx sI � F[ ]�1G (r x m)

Laplace Transform of Output Vector�

y(s) = Hxx(s)+Huu(s) = Hx sI� F[ ]�1 x(0)+Gu(s)[ ]+Huu(s)

= Hx sI� F( )�1G +Hu
�� ��u(s)+Hx sI� F[ ]�1 x(0)
= Control Effect + Initial Condition Effect

15�

Scalar Frequency Response 
from Transfer Function Matrix�

Transfer function matrix with s = j����

  HH (j� ) = Hx j�I � F[ ]�1G (r x m)

  

�yi s( )
�u j s( ) = HH ij (j� ) = Hxi

j�I� F[ ]�1G j (r x m)

Hxi
= ith  row of Hx

G j = j th  column of G
16�



Second-Order Transfer Function �

H(s) = HxA s( )G =
h11 h12
h21 h22

�

�
�
�

�


�
�

adj
s � f11( ) � f12
� f21 s � f22( )

�

�

�
�

�



�
�

det
s � f11( ) � f12
� f21 s � f22( )

�

�
�
�

�



	
	

g11 g12
g21 f22

�

�
�
�

�


�
�

(n = m = r = 2)

Second-order transfer function matrix�

r � n( ) n � n( ) n � m( )
= r � m( ) = 2 � 2( )

 

�x t( ) =
�x1 t( )
�x2 t( )

�

�
�
�

�

�
�
�
=

f11 f12
f21 f22

�

�
�
�

�

�
�
�

x1 t( )
x2 t( )

�

�
�
�

�

�
�
�
+

g11 g12
g21 f22

�

�
�
�

�

�
�
�

u1 t( )
u2 t( )

�

�
�
�

�

�
�
�

y t( ) =
y1 t( )
y2 t( )

�

�
�
�

�

�
�
�
=

h11 h12
h21 h22

�

�
�
�

�

�
�
�

x1 t( )
x2 t( )

�

�
�
�

�

�
�
�

Second-order dynamic system�

17�

Scalar Transfer Function 
from ��uj to ��yi�

Hij (s) =
kijnij (s)
�(s)

=
kij s

q + bq�1s
q�1 + ...+ b1s + b0( )

sn + an�1s
n�1 + ...+ a1s + a0( )

# zeros = q�
# poles = n�

Just one element of the matrix, H(s)�
Denominator polynomial contains n roots�

Each numerator term is a polynomial with q zeros, 
where  q varies from term to term and � n – 1�

=
kij s� z1( )ij s� z2( )ij ... s� zq( )ij

s��1( ) s��2( )... s��n( )
18�



Scalar Frequency Response 
Function�

Hij (j� ) =
kij j� � z1( )ij j� � z2( )ij ... j� � zq( )ij

j� � �1( ) j� � �2( )... j� � �n( )

Substitute: s = j���

Frequency response is a complex function of 
input frequency, ���

Real and imaginary parts, or�
** Amplitude ratio and phase angle **�

= a(�)+ jb(�)� AR(�) e j� (� )

19�

MATLAB Bode Plot with asymp.m�
http://www.mathworks.com/matlabcentral/�

http://www.mathworks.com/matlabcentral/3#��/���%��/10183-bode-plot-with-asymptotes�

2nd-Order Pitch Rate Frequency Response, with zero�

asymp.m�bode.m�

20�



7�High gain (amplitude) 
at low frequency�

–� Desired response is 
slowly varying�

7� Low gain at high 
frequency�

–� Random errors vary 
rapidly�

7�Crossover region is 
<>;.819�?<1/5J/�

Desirable Open-Loop Frequency 
Response Characteristics (Bode)�

21�

Examples of 
Proportional LQ 

Regulator Response�

22�



Example: Open-Loop Stable and 
Unstable 2nd-Order LTI System 
Response to Initial Condition�

Stable Eigenvalues =�
  -0.5000 + 3.9686i�
  -0.5000 - 3.9686i�
�
Unstable Eigenvalues =�
   0.2500 + 3.9922i�
   0.2500 - 3.9922i�

FS =
0 1

�16 �1
�

�
�

�

�
�

FU = 0 1
�16 +0.5

�

�
�

�

�
�

23�

Example: Stabilizing Effect of Linear-
Quadratic Regulators for Unstable 

2nd-Order System�

r = 1�
Control Gain (C) =�
    0.2620    1.0857�
�
Riccati Matrix (S) =�
    2.2001    0.0291�
    0.0291    0.1206�
�
Closed-Loop Eigenvalues =�
   -6.4061�
   -2.8656�

r = 100�
Control Gain (C) =�
    0.0028    0.1726�
�
Riccati Matrix (S) =�
   30.7261    0.0312�
    0.0312    1.9183�
�
Closed-Loop Eigenvalues =�
  -0.5269 + 3.9683i�
  -0.5269 - 3.9683i�

min
u
J = min

u

1
2

x1
2 + x2

2 + ru2( )dt
0

�

�
�

�
�

�

�
�

u(t) = � c1 c2�
�

�
�

x1(t)
x2 (t)

�

�
�
�

�

�
�
�
= �c1x1(t) � c2x2 (t)

For the 
unstable 
system�

24�



Example: Stabilizing/Filtering Effect of 
LQ Regulators for the Unstable 2nd-

Order System�
r = 1�
Control Gain (C) =�
    0.2620    1.0857�
�
Riccati Matrix (S) =�
    2.2001    0.0291�
    0.0291    0.1206�
�
Closed-Loop Eigenvalues =�
   -6.4061�
   -2.8656�

r = 100�
Control Gain (C) =�
    0.0028    0.1726�
�
Riccati Matrix (S) =�
   30.7261    0.0312�
    0.0312    1.9183�
�
Closed-Loop Eigenvalues =�
  -0.5269 + 3.9683i�
  -0.5269 - 3.9683i�

25�

Example: Open-Loop Response of 
the Stable 2nd-Order System to 

Random Disturbance�

Eigenvalues = -1.1459, -7.8541�

26�



Example: Disturbance Response of 
Unstable System with Two LQRs�

27�

LQ Regulators with Output 
Vector Cost Functions�

28�



Quadratic 
Weighting of the 
Output�

J = 1
2

�yT (t)Qy�y(t)�� ��dt
0

�

�

= 1
2

Hx�x(t)+Hu�u(t)[ ]T Qy Hx�x(t)+Hu�u(t)[ ]{ }dt
0

�

�

�u(t) = �uC (t) �CO�x t( )
 

u
min J =

u
min

1
2

�xT (t) �uT (t)�
�

�

Hx

TQyHx Hx
TQyHu

Hu
TQyHx Hu

TQyHu +Ro

�

�

�
�

�



�
�

�x(t)
�u(t)

�

�
�
�

�


�
�

�
�
	

�	

�
�
	

�	
dt

0

�




u
min J �

u
min

1
2

�xT (t) �uT (t)�
�

�

QO MO

MO
T RO +Ro

�

�
�
�

�


�
�

�x(t)
�u(t)

�

�
�
�

�


�
�

�
�
	

�	

�
�
	

�	
dt

0

�




�y(t) = Hx�x(t) +Hu�u(t)

29�

State Rate Can Be 
Expressed as an Output 

to be Minimized�

 
J = 1

2
�yT (t)Qy�y(t)�� ��dt

0

�

� = 1
2

��xT (t)Qy��x(t)�� ��dt
0

�

�

�u(t) = �uC (t)�CSR�x t( )

 

��x(t) = F�x(t)+G�u(t)
�y(t) = Hx�x(t)+Hu�u(t) � F�x(t)+G�u(t)

Special case of output weighting�

 

J = 1
2

�xT (t) �uT (t)�
�

�

FTQyF FTQyG

GTQyF GTQyG +Ro

�

�

�
�

�



�
�

�x(t)
�u(t)

�

�
�
�

�


�
�

�
�
	

�	

�
�
	

�	
dt

0

�




�
1
2

�xT (t) �uT (t)�
�

�

QSR MSR

MSR
T RSR +Ro

�

�
�
�

�


�
�

�x(t)
�u(t)

�

�
�
�

�


�
�

�
�
	

�	

�
�
	

�	
dt

0

�
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Implicit Model-
Following LQ 
Regulator�

�u(t) = �uC (t)�CIMF�x t( )

 ��x(t) = F�x(t) +G�u(t)
Simulator aircraft dynamics�

 ��xM (t) = FM�xM (t)
Ideal aircraft dynamics�

Feedback control law�

Another special case of output weighting�
31�

Implicit Model-Following 
LQ Regulator�

 

��x(t) = F�x(t)+G�u(t)
��xM (t) = FM�xM (t)

 

If simulation is successful,
�xM (t) � �x(t)

and
��xM (t) � FM�x(t)

32�



Implicit Model-Following 
LQ Regulator�

 
J = 1

2
��x(t)� ��xM (t)[ ]T QM ��x(t)� ��xM (t)[ ]{ }dt

0

�

�

�u(t) = �uC (t)�CIMF�x t( )

Cost function penalizes difference between actual and 
ideal model dynamics�

Therefore, ideal model is implicit in the optimizing 
feedback control law�

 

J = 1
2

�x(t) �u(t)�
�

�
�
T F � FM( )T QM F � FM( ) F � FM( )T QMG

GTQM F � FM( ) GTQMG +Ro

�

�

�
�

�

�




�x(t)
�u(t)

�

�
�
�

�

�



�
�



	


�
�



�

dt

0

�

�

�
1
2

�x(t) �u(t)�
�

�
�
T QIMF M IMF

M IMF
T R IMF +Ro

�

�
�
�

�

�



�x(t)
�u(t)

�

�
�
�

�

�



�
�



	


�
�



�

dt

0

�

�

33�

Proportional-Derivative Control�
Basic LQ regulators provide proportional control�

�u(t) = �C�x t( ) + �uC (t)

How can proportional-derivative 
(PD) control be implemented with 

an LQ regulator?�

Derivative feedback can either quicken or slow system 
response (��lead�� or ��lag��), depending on the control gain sign�

 �u(t) = �CP�x t( ) �CD��x t( ) + �uC (t)

34�



Explicit Proportional-Derivative Control�

Substitute for the derivative�
 �u(t) = �CP�x t( ) ±CD��x t( ) + �uC (t)

 

�u(t) = I �CDG[ ]�1 � CP �CDF( )�x t( ) + �uC (t)�� ��

� �CPD�x t( ) + I �CDG[ ]�1�uC (t)

Structure is the same as that of  proportional control�

Implement as ad hoc�9;05J/-@5;:�;2�
proportional LQ  control, e.g., � CD = �CPLQ

 

�u(t) = �CP�x t( ) ±CD F�x(t)+G�u(t)[ ]+ �uC (t)
I �CDG[ ]�u(t) = �CP�x t( ) ±CDF�x(t)+ �uC (t)

Inverse Problem: Given a stabilizing gain matrix, CPD, does 
it minimize some (unknown) cost function? [TBD]� 35�

Implicit Proportional-Derivative Control�
Add state rate, i.e., the derivative, to a standard cost function�

Include system dynamics in the cost function�

 
J = 1

2
�xT (t)Qx�x(t)± ��xT (t)Q �x��x(t)+ �uT (t)R�u(t)�� ��dt

0

�

�

 

J = 1
2

�xT (t)Qx�x(t)± F�x t( ) +G�u t( )�� �
T Q �x F�x t( ) +G�u t( )�� � + �uT (t)R�u(t){ }dt

0

�




�
1
2

�xT (t) �uT (t)�
�

�

QPD MPD

MPD
T RPD

�

�
�
�

�


�
�

�x(t)
�u(t)

�

�
�
�

�


�
�

�
�
	

�	

�
�
	

�	
dt

0

�




�u(t) = �CPD�x t( ) + �uC (t)

Penalty/reward for fast motions�
�

Must verify guaranteed stability criteria�
�

36�



Cost Functions with 
Augmented State Vector�

37�

Integral Compensation Can Reduce 
Steady-State Errors�

 

��x(t) = F�x(t)+G�u(t)

���� t( ) = H I�x(t)

�� Selector matrix, HI, can 
reduce or mix integrals 
in feedback�

�� Sources of Steady-State Error�
�� Constant disturbance�
�� Errors in system dynamic model�

38�



LQ Proportional-
Integral (PI) Control �

 

�u(t) = �CB�x t( )�CI H I�x �( )d�
0

t

�
� �CB�x t( )�CI��� t( ) + �uC (t)

 

where the integral state is

  �� t( ) � H I�x �( )d�
0

t

�
dim H I( ) = m � n  

define  � t( ) �
�x t( )
�� t( )

�

�
�
�

�

	
�
�

39�

Integral State is Added 
to the Cost Function and 
the Dynamic Model�

 

min
�u

J = 1
2

�xT (t)Qx�x(t)+ ���T t( )Q����� t( ) + �uT (t)R�u(t)�� 	�dt
0

�

�

= 1
2

���T (t)
Qx 0
0 Q��

�

�
�
�

	

�




���(t)+ �uT (t)R�u(t)

�

�

�
�

	

�





dt

0

�

�

subject to ����(t) = F�����(t)+G���u(t)

�u(t) = �C����(t)+ �uC (t)

= �CB�x t( )�CI��� t( ) + �uC (t)
40�



Integral State is Added to the Cost 
Function and the Dynamic Model�

�u(t) = �C����(t)+ �uC (t)

= �CB�x t( )�CI��� t( ) + �uC (t)

�u(s) = �C����(s)+ �uC (s)

= �CB�x s( )�CI��� s( ) + �uC (s)

= �CB�x s( )�CI
Hx�x s( )

s
+ �uC (s)

�u(s) = �
CBs�x s( ) +CIHx�x s( )

s
+ �uC (s)

= �
CBs +CIHx[ ]

s
�x s( ) + �uC (s)

Form of (m x n) 
Bode Plots 

from �x to �u?�
41�

Actuator Dynamics and 
Proportional-Filter LQ 

Regulators�

42�



Proportional LQ Regulator: High-
Frequency Control in Response to 

High-Frequency Disturbances�
2nd-Order System Response with Perfect Actuator�

Good disturbance rejection, but may high bandwidth may be unrealistic�
43�

Actuator Dynamics May Impact 
System Response�

44�



Actuator Dynamics May Affect 
System Response�

 

��x(t)
� �u(t)

�

�
�
�

�

�
�
�
= F G

0 �K
�

�
�

�

�
�

�x(t)
�u(t)

�

�
�
�

�

�
�
�
+ 0

I
�

�
�

�

�
��v(t)

Control variable is actuator forcing function�

Augment state dynamics to include actuator dynamics�

 �v(t) = � �uIntegrator (t) = �CB�x t( ) + �vC (t) is sub -optimal
45�

LQ Regulator with Actuator Dynamics�

 

min
�u

J = 1
2

�xT (t)Qx�x(t)+ �uT (t)Ru�u(t)+ �vT (t)Rv�v(t)�� �
dt
0

�

�

= 1
2

���T (t)
Qx 0
0 Ru

�

�
�
�

�



	
	
���(t)+ �vT (t)Rv�v(t)

�

�
�
�

�



	
	
dt

0

�

�
subject to ����(t) = F�����(t)+G���v(t)

Cost function is minimized with re-
01J:10�?@-@1�-:0�/;:@>;8�B1/@;>?�

���(t) =
�x(t)
�u(t)

�

�
�
�

�

	
�
�
; F�� =

F G
0 �K

�

�
�

�

	
�; G�� =

0
I

�

�
�

�

	
�

46�



LQ Regulator with Actuator Dynamics�

�v(t) = �C����(t)+ �vC (t)

= �CB�x t( )�CA�u(t)+ �vC (t)

�v(s) = �CB�x s( )�CA�u(s)+ �vC (s)

Control Force�

47�

LQ Regulator with Actuator Dynamics�

Control Displacement�

 

� �u(t) = �K�u(t)�CA�u(t)�CB�x t( ) + �vC (t)
s�u(s) = �K�u(s)�CA�u(s)�CB�x s( ) + �vC (s)+ �u(0)

sI+K +CA[ ]�u(s) = �CB�x s( ) + �vC (s)

�u(s) = sI+K +CA[ ]�1 �CB�x s( ) + �vC (s)�� ��
48�



 %�&13A8-@;>�C5@4��>@5J/5-8�
Actuator Dynamics�

 

��x(t)
� �u(t)

�

�
�
�

�

�
�
�
= F G

0 0
�

�
�

�

�
�

�x(t)
�u(t)

�

�
�
�

�

�
�
�
+ 0

I
�

�
�

�

�
��v(t)

 �v(t) = � �uInt (t) = �CB�x t( )�CA�u(t)+ �vC (t)

CA� %+)&�,��*��)+ 3� �#���+,�+&)��0%�$ �*�

LQ control variable is derivative of actual system control�

49�

Proportional-Filter 
(PF) LQ Regulator�

���(t) =
�x(t)
�u(t)

�

�
�
�

�

�
�
�
; F�� =

F G
0 0

�

�
�

�

�
�; G�� =

0
I

�

�
�

�

�
�

 �v(t) = � �uIntegrator (t) = �C����(t)+ �vC (t)

CA provides #&.�'�**�3#+�) %�������+ on the control input �

�u(s) = sI+CA[ ]�1 �CB�x s( ) + �vC (s)�� ��

Optimal LQ Regulator�

50�



Proportional-Filter LQ Regulator 
Reduces High-Frequency Control 

Signals �
2nd-Order System Response�

... at the expense of decreased disturbance rejection� 51�

Next Time: �
Linear-Quadratic Control 

System Design�
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Implicit Model-Following Linear-
Quadratic Regulator�

Model the response of one airplane with 
another using feedback control�
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Princeton Variable-Response 
Research Aircraft (VRA)�
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