Filters, Cost Functions, and Controller Structures

Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015

- Dynamic systems as low-pass filters
- Frequency response of dynamic systems
- Shaping system response
 - LQ regulators with output vector cost functions
 - Implicit model-following
 - Cost functions with augmented state vector

$\xrightarrow{\Delta u_c(t)} \xrightarrow{\Delta u(t)} \cdot$	System	$\Delta \mathbf{x}(t)$

1

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE546.html http://www.princeton.edu/~stengel/OptConEst.html

First-Order Low-Pass Filter

Smoothing effect on sharp changes

Frequency Response of Dynamic Systems

5

Response of 1st-Order Low-Pass Filters to Sine-Wave Inputs

Response of 1st-Order Low-Pass Filters to White Noise

Relationship of Input Frequencies to Filter Bandwidth

Bode Plot Asymptotes, Departures, and Phase Angles for 1st-Order Lags

2nd-Order Low-Pass Filter

$$\ddot{x}(t) = -2\zeta\omega_n \dot{x}(t) - \omega_n^2 x(t) + \omega_n^2 u(t)$$

Laplace transform, I.C. = 0

$$x(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} u(s)$$

Frequency response, $s = j\omega$

$$x(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta\omega_n(j\omega) + \omega_n^2}u(j\omega)$$

Amplitude Ratio Asymptotes and Departures of Second-Order Bode Plots (No Zeros)

- AR asymptotes of a pair of complex poles
 - When $\omega = 0$, slope = 0 dB/dec
 - − When $ω ≥ ω_n$, slope = −40 dB/ dec
- Height of resonant peak depends on damping ratio

Phase Angles of Second-Order Bode Plots (No Zeros)

- When $\omega = 0$, $\varphi = 0^{\circ}$
- When $\omega = \omega_n$, $\phi = -90^\circ$
- When ω -> ∞, φ -> −
 180°
- Abruptness of phase shift depends on damping ratio

13

Transformation of the System Equations

Time-Domain System Equations

$$\dot{\mathbf{x}}(t) = \mathbf{F} \mathbf{x}(t) + \mathbf{G} \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{H}_{\mathbf{x}} \mathbf{x}(t) + \mathbf{H}_{\mathbf{u}} \mathbf{u}(t)$$

Laplace Transforms of System Equations

$$s\mathbf{x}(s) - \mathbf{x}(0) = \mathbf{F}\mathbf{x}(s) + \mathbf{G}\mathbf{u}(s)$$
$$\mathbf{x}(s) = [s\mathbf{I} - \mathbf{F}]^{-1}[\mathbf{x}(0) + \mathbf{G}\mathbf{u}(s)]$$
$$\mathbf{y}(s) = \mathbf{H}_{\mathbf{x}}\mathbf{x}(s) + \mathbf{H}_{\mathbf{u}}\mathbf{u}(s)$$

Transfer Function Matrix

Laplace Transform of Output Vector

$$\mathbf{y}(s) = \mathbf{H}_{\mathbf{x}}\mathbf{x}(s) + \mathbf{H}_{\mathbf{u}}\mathbf{u}(s) = \mathbf{H}_{\mathbf{x}}[s\mathbf{I} - \mathbf{F}]^{-1}[\mathbf{x}(0) + \mathbf{G}\mathbf{u}(s)] + \mathbf{H}_{\mathbf{u}}\mathbf{u}(s)$$
$$= [\mathbf{H}_{\mathbf{x}}(s\mathbf{I} - \mathbf{F})^{-1}\mathbf{G} + \mathbf{H}_{\mathbf{u}}]\mathbf{u}(s) + \mathbf{H}_{\mathbf{x}}[s\mathbf{I} - \mathbf{F}]^{-1}\mathbf{x}(0)$$
$$= Control Effect + Initial Condition Effect$$

Transfer Function Matrix relates control input to system output with H_u = 0 and neglecting initial condition

$$\boldsymbol{H}(s) = \mathbf{H}_{\mathbf{x}} \left[s\mathbf{I} - \mathbf{F} \right]^{-1} \mathbf{G} \quad (r \ x \ m)$$

15

16

Scalar Frequency Response from Transfer Function Matrix

Transfer function matrix with $s = j\omega$

$$\boldsymbol{H}(j\boldsymbol{\omega}) = \mathbf{H}_{\mathbf{x}} [j\boldsymbol{\omega}\mathbf{I} - \mathbf{F}]^{-1} \mathbf{G} \quad (r \ x \ m)$$

$$\frac{\Delta y_i(s)}{\Delta u_j(s)} = \boldsymbol{H}_{ij}(j\omega) = \boldsymbol{H}_{\mathbf{x}_i} [j\omega \mathbf{I} - \mathbf{F}]^{-1} \mathbf{G}_j \quad (r \ x \ m)$$
$$\mathbf{H}_{\mathbf{x}_i} = i^{th} \text{ row of } \mathbf{H}_{\mathbf{x}}$$
$$\mathbf{G}_j = j^{th} \text{ column of } \mathbf{G}$$

Second-Order Transfer Function

Second-order dynamic system

$\dot{\mathbf{x}}(t) = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$	$ \begin{array}{c} \dot{x}_1(t) \\ \dot{x}_2(t) \end{array} \right] = \left[\begin{array}{c} \end{array} \right] $	$\begin{array}{ccc} f_{11} & f_{12} \\ f_{21} & f_{22} \end{array}$	$\left[\begin{array}{c} x_1(t) \\ x_2(t) \end{array}\right]$	$\begin{pmatrix} t \\ t \end{pmatrix} = \left[\begin{array}{c} t \\ t \end{pmatrix} \right] + \left[\begin{array}{c} t \\ t \\ t \end{bmatrix} \right]$	g_{11} g_{21} g_{21} g_{21}	$\begin{bmatrix} g_{12} \\ f_{22} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix}$	$\left.\begin{array}{c}u_1(t)\\u_2(t)\end{array}\right]$
	$\mathbf{y}(t) = \begin{bmatrix} & & \\ & & \\ & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & $	$\begin{array}{c} y_1(t) \\ y_2(t) \end{array}$	$= \begin{bmatrix} h_{11} \\ h_{21} \end{bmatrix}$	$\begin{bmatrix} h_{12} \\ h_{22} \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix}$	$\begin{array}{l} x_1(t) \\ x_2(t) \end{array}$		

Second-order transfer function matrix

$\boldsymbol{H}(s) = \mathbf{H}_{\mathbf{x}} \mathbf{A}(s) \mathbf{G} = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \frac{\operatorname{adj}}{\operatorname{dat}}$	$ \begin{array}{c c} (s-f_{11}) & -f_{12} \\ \hline -f_{21} & (s-f_{22}) \\ \hline (s-f_{11}) & -f_{12} \end{array} \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & f_{22} \end{bmatrix} $
$(n = m = r = 2) \qquad (r \times n)(n \times n)(n \times m) = (r \times m) = (2 \times 2)$	$-f_{21}$ $(s-f_{22})$

17

Scalar Transfer Function from Δu_j to Δy_i

$$H_{ij}(s) = \frac{k_{ij}n_{ij}(s)}{\Delta(s)} = \frac{k_{ij}\left(s^{q} + b_{q-1}s^{q-1} + \dots + b_{1}s + b_{0}\right)}{\left(s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0}\right)}$$

Just <u>one element</u> of the matrix, H(s) Denominator polynomial contains n roots Each numerator term is a polynomial with q zeros, where q varies from term to term and ≤ n - 1

$$=\frac{k_{ij}\left(s-z_{1}\right)_{ij}\left(s-z_{2}\right)_{ij}\ldots\left(s-z_{q}\right)_{ij}}{\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right)\ldots\left(s-\lambda_{n}\right)}$$
zeros = q
poles = n

Scalar Frequency Response Function

Substitute: $s = j\omega$

$$H_{ij}(j\omega) = \frac{k_{ij}(j\omega - z_1)_{ij}(j\omega - z_2)_{ij}...(j\omega - z_q)_{ij}}{(j\omega - \lambda_1)(j\omega - \lambda_2)...(j\omega - \lambda_n)}$$

 $= a(\omega) + jb(\omega) \rightarrow AR(\omega) e^{j\phi(\omega)}$

Frequency response is a complex function of input frequency, ω Real and imaginary parts, or ** Amplitude ratio and phase angle **

19

MATLAB Bode Plot with asymp.m

http://www.mathworks.com/matlabcentral/

http://www.mathworks.com/matlabcentral/fileexchange/10183-bode-plot-with-asymptotes

Desirable Open-Loop Frequency Response Characteristics (Bode)

Examples of Proportional LQ Regulator Response

Example: Open-Loop Stable and Unstable 2nd-Order LTI System Response to Initial Condition

Example: Stabilizing Effect of Linear-Quadratic Regulators for Unstable 2nd-Order System

Example: Stabilizing/Filtering Effect of LQ Regulators for the Unstable 2nd-Order System

Example: Open-Loop Response of the Stable 2nd-Order System to Random Disturbance

Example: Disturbance Response of Unstable System with Two LQRs

LQ Regulators with Output Vector Cost Functions

State Rate Can Be Expressed as an Output to be Minimized

Special case of output weighting

Another special case of output weighting

Implicit Model-Following LQ Regulator

$$\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t)$$
$$\Delta \dot{\mathbf{x}}_{M}(t) = \mathbf{F}_{M} \Delta \mathbf{x}_{M}(t)$$

If simulation is successful,

$$\Delta \mathbf{x}_{M}(t) \approx \Delta \mathbf{x}(t)$$
and

$$\Delta \dot{\mathbf{x}}_{M}(t) \approx \mathbf{F}_{M} \Delta \mathbf{x}(t)$$

32

Implicit Model-Following LQ Regulator

Cost function penalizes <u>difference</u> between actual and ideal model dynamics

$$J = \frac{1}{2} \int_{0}^{\infty} \left\{ \begin{bmatrix} \Delta \dot{\mathbf{x}}(t) - \Delta \dot{\mathbf{x}}_{M}(t) \end{bmatrix}^{T} \mathbf{Q}_{M} \begin{bmatrix} \Delta \dot{\mathbf{x}}(t) - \Delta \dot{\mathbf{x}}_{M}(t) \end{bmatrix} \right\} dt$$

$$J = \frac{1}{2} \int_{0}^{\infty} \left\{ \begin{bmatrix} \Delta \mathbf{x}(t) & \Delta \mathbf{u}(t) \end{bmatrix}^{T} \begin{bmatrix} (\mathbf{F} - \mathbf{F}_{M})^{T} \mathbf{Q}_{M} (\mathbf{F} - \mathbf{F}_{M}) & (\mathbf{F} - \mathbf{F}_{M})^{T} \mathbf{Q}_{M} \mathbf{G} \\ \mathbf{G}^{T} \mathbf{Q}_{M} (\mathbf{F} - \mathbf{F}_{M}) & \mathbf{G}^{T} \mathbf{Q}_{M} \mathbf{G} + \mathbf{R}_{o} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x}(t) \\ \Delta \mathbf{u}(t) \end{bmatrix} \right\} dt$$

$$\triangleq \frac{1}{2} \int_{0}^{\infty} \left\{ \begin{bmatrix} \Delta \mathbf{x}(t) & \Delta \mathbf{u}(t) \end{bmatrix}^{T} \begin{bmatrix} \mathbf{Q}_{IMF} & \mathbf{M}_{IMF} \\ \mathbf{M}_{IMF}^{T} & \mathbf{R}_{IMF} + \mathbf{R}_{o} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x}(t) \\ \Delta \mathbf{u}(t) \end{bmatrix} \right\} dt$$

Therefore, ideal model is <u>implicit</u> in the optimizing feedback control law

$$\Delta \mathbf{u}(t) = \Delta \mathbf{u}_{C}(t) - \mathbf{C}_{IMF} \Delta \mathbf{x}(t)$$
₃₃

Proportional-Derivative Control

Basic LQ regulators provide proportional control

 $\Delta \mathbf{u}(t) = -\mathbf{C}\Delta \mathbf{x}(t) + \Delta \mathbf{u}_{C}(t)$

<u>Derivative feedback</u> can either quicken or slow system response ("lead" or "lag"), depending on the control gain sign

$$\Delta \mathbf{u}(t) = -\mathbf{C}_{P} \Delta \mathbf{x}(t) - \mathbf{C}_{D} \Delta \dot{\mathbf{x}}(t) + \Delta \mathbf{u}_{C}(t)$$

How can proportional-derivative (*PD*) control be implemented with an LQ regulator?

Explicit Proportional-Derivative Control

 $\Delta \mathbf{u}(t) = -\mathbf{C}_{P} \Delta \mathbf{x}(t) \pm \mathbf{C}_{D} \Delta \dot{\mathbf{x}}(t) + \Delta \mathbf{u}_{C}(t)$

Substitute for the derivative

$$\Delta \mathbf{u}(t) = -\mathbf{C}_{P} \Delta \mathbf{x}(t) \pm \mathbf{C}_{D} [\mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t)] + \Delta \mathbf{u}_{C}(t)$$
$$[\mathbf{I} \mp \mathbf{C}_{D} \mathbf{G}] \Delta \mathbf{u}(t) = -\mathbf{C}_{P} \Delta \mathbf{x}(t) \pm \mathbf{C}_{D} \mathbf{F} \Delta \mathbf{x}(t) + \Delta \mathbf{u}_{C}(t)$$

Structure is the same as that of proportional control

$$\Delta \mathbf{u}(t) = \left[\mathbf{I} \mp \mathbf{C}_{D} \mathbf{G}\right]^{-1} \left[-\left(\mathbf{C}_{P} \mp \mathbf{C}_{D} \mathbf{F}\right) \Delta \mathbf{x}(t) + \Delta \mathbf{u}_{C}(t)\right]$$
$$\triangleq -\mathbf{C}_{PD} \Delta \mathbf{x}(t) + \left[\mathbf{I} \mp \mathbf{C}_{D} \mathbf{G}\right]^{-1} \Delta \mathbf{u}_{C}(t)$$

Implement as *ad hoc* modification of proportional LQ control, e.g., $C_D = \varepsilon C_{P_{LO}}$

35

36

Inverse Problem: Given a stabilizing gain matrix, **C**_{PD}, does it minimize some (unknown) cost function? [TBD]

Implicit Proportional-Derivative Control

Add <u>state rate</u>, i.e., the derivative, to a standard cost function Include system dynamics in the cost function

$$J = \frac{1}{2} \int_{0}^{\infty} \left[\Delta \mathbf{x}^{T}(t) \mathbf{Q}_{\mathbf{x}} \Delta \mathbf{x}(t) \pm \Delta \dot{\mathbf{x}}^{T}(t) \mathbf{Q}_{\dot{\mathbf{x}}} \Delta \dot{\mathbf{x}}(t) + \Delta \mathbf{u}^{T}(t) \mathbf{R} \Delta \mathbf{u}(t) \right] dt$$

Penalty/reward for fast motions

$$J = \frac{1}{2} \int_{0}^{\infty} \left\{ \Delta \mathbf{x}^{T}(t) \mathbf{Q}_{\mathbf{x}} \Delta \mathbf{x}(t) \pm \left[\mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t) \right]^{T} \mathbf{Q}_{\mathbf{x}} \left[\mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t) \right] + \Delta \mathbf{u}^{T}(t) \mathbf{R} \Delta \mathbf{u}(t) \right\} dt$$
$$= \frac{1}{2} \int_{0}^{\infty} \left\{ \begin{bmatrix} \Delta \mathbf{x}^{T}(t) & \Delta \mathbf{u}^{T}(t) \end{bmatrix} \begin{bmatrix} \mathbf{Q}_{PD} & \mathbf{M}_{PD} \\ \mathbf{M}_{PD}^{T} & \mathbf{R}_{PD} \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x}(t) \\ \Delta \mathbf{u}(t) \end{bmatrix} \right\} dt$$

Must verify guaranteed stability criteria

$$\Delta \mathbf{u}(t) = -\mathbf{C}_{PD} \Delta \mathbf{x}(t) + \Delta \mathbf{u}_{C}(t)$$

Cost Functions with Augmented State Vector

Integral Compensation Can Reduce Steady-State Errors

Integral State is Added to the Cost Function and the Dynamic Model

$$\begin{split} \min_{\Delta \mathbf{u}} J &= \frac{1}{2} \int_{0}^{\infty} \left[\Delta \mathbf{x}^{T}(t) \mathbf{Q}_{\mathbf{x}} \Delta \mathbf{x}(t) + \Delta \mathbf{\xi}^{T}(t) \mathbf{Q}_{\mathbf{\xi}} \Delta \mathbf{\xi}(t) + \Delta \mathbf{u}^{T}(t) \mathbf{R} \Delta \mathbf{u}(t) \right] dt \\ &= \frac{1}{2} \int_{0}^{\infty} \left[\Delta \mathbf{\chi}^{T}(t) \begin{bmatrix} \mathbf{Q}_{\mathbf{x}} & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_{\mathbf{\xi}} \end{bmatrix} \Delta \mathbf{\chi}(t) + \Delta \mathbf{u}^{T}(t) \mathbf{R} \Delta \mathbf{u}(t) \end{bmatrix} dt \\ &\text{subject to} \quad \Delta \dot{\mathbf{\chi}}(t) = \mathbf{F}_{\mathbf{\chi}} \Delta \mathbf{\chi}(t) + \mathbf{G}_{\mathbf{\chi}} \Delta \mathbf{u}(t) \end{split}$$
$$\begin{aligned} & \Delta \mathbf{u}(t) = -\mathbf{C}_{\mathbf{\chi}} \Delta \mathbf{\chi}(t) + \Delta \mathbf{u}_{c}(t) \\ &= -\mathbf{C}_{B} \Delta \mathbf{x}(t) - \mathbf{C}_{I} \Delta \mathbf{\xi}(t) + \Delta \mathbf{u}_{c}(t) \end{split}$$

40

H,

Integral State is Added to the Cost Function and the Dynamic Model

$$\Delta \mathbf{u}(t) = -\mathbf{C}_{\chi} \Delta \chi(t) + \Delta \mathbf{u}_{c}(t)$$

$$= -\mathbf{C}_{B} \Delta \mathbf{x}(t) - \mathbf{C}_{I} \Delta \xi(t) + \Delta \mathbf{u}_{c}(t)$$

$$\Delta \mathbf{u}(s) = -\mathbf{C}_{\chi} \Delta \chi(s) + \Delta \mathbf{u}_{c}(s)$$

$$= -\mathbf{C}_{B} \Delta \mathbf{x}(s) - \mathbf{C}_{I} \Delta \xi(s) + \Delta \mathbf{u}_{c}(s)$$

$$= -\mathbf{C}_{B} \Delta \mathbf{x}(s) - \mathbf{C}_{I} \frac{\mathbf{H}_{x} \Delta \mathbf{x}(s)}{s} + \Delta \mathbf{u}_{c}(s)$$

$$\Delta \mathbf{u}(s) = -\frac{\mathbf{C}_{B} s \Delta \mathbf{x}(s) + \mathbf{C}_{I} \mathbf{H}_{x} \Delta \mathbf{x}(s)}{s} + \Delta \mathbf{u}_{c}(s)$$
Form of (m x n)
Bode Plots
from $\Delta \mathbf{x}$ to $\Delta \mathbf{u}$?

Actuator Dynamics and Proportional–Filter LQ Regulators

<u>Proportional LQ Regulator</u>: High-Frequency Control in Response to High-Frequency Disturbances

Actuator Dynamics May Impact System Response

Actuator Dynamics May Affect System Response

LQ Regulator with Actuator Dynamics

Cost function is minimized with redefined state and control vectors

$$\Delta \boldsymbol{\chi}(t) = \begin{bmatrix} \Delta \mathbf{x}(t) \\ \Delta \mathbf{u}(t) \end{bmatrix}; \quad \mathbf{F}_{\boldsymbol{\chi}} = \begin{bmatrix} \mathbf{F} & \mathbf{G} \\ \mathbf{0} & -\mathbf{K} \end{bmatrix}; \quad \mathbf{G}_{\boldsymbol{\chi}} = \begin{bmatrix} \mathbf{0} \\ \mathbf{I} \end{bmatrix}$$

LQ Regulator with Actuator Dynamics

LQ Regulator with Actuator Dynamics

$$\Delta \dot{\mathbf{u}}(t) = -\mathbf{K}\Delta \mathbf{u}(t) - \mathbf{C}_{A}\Delta \mathbf{u}(t) - \mathbf{C}_{B}\Delta \mathbf{x}(t) + \Delta \mathbf{v}_{C}(t)$$

$$s\Delta \mathbf{u}(s) = -\mathbf{K}\Delta \mathbf{u}(s) - \mathbf{C}_{A}\Delta \mathbf{u}(s) - \mathbf{C}_{B}\Delta \mathbf{x}(s) + \Delta \mathbf{v}_{C}(s) + \Delta \mathbf{u}(0)$$

Control Displacement

$$\begin{bmatrix} s\mathbf{I} + \mathbf{K} + \mathbf{C}_A \end{bmatrix} \Delta \mathbf{u}(s) = -\mathbf{C}_B \Delta \mathbf{x}(s) + \Delta \mathbf{v}_C(s)$$
$$\Delta \mathbf{u}(s) = \begin{bmatrix} s\mathbf{I} + \mathbf{K} + \mathbf{C}_A \end{bmatrix}^{-1} \begin{bmatrix} -\mathbf{C}_B \Delta \mathbf{x}(s) + \Delta \mathbf{v}_C(s) \end{bmatrix}$$

LQ Regulator with Artificial Actuator Dynamics

LQ control variable is derivative of actual system control

Proportional-Filter LQ Regulator Reduces High-Frequency Control Signals

Next Time: Linear-Quadratic Control System Design

Supplemental Material

Implicit Model-Following Linear-Quadratic Regulator

Model the response of one airplane with another using feedback control

Princeton Variable-Response Research Aircraft (VRA)

