Filters, Cost Functions, and Controller Structures

Robert Stengel

Optimal Control and Estimation MAE 546
Princeton University, 2015

- Dynamic systems as low-pass filters
- Frequency response of dynamic systems
- Shaping system response
- LQ regulators with output vector cost functions
- Implicit model-following
- Cost functions with augmented state vector

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only
http://www.princeton.edu/~stengel/MAE546.htm
http://www.princeton.edu/~stengel/OptConEst.htm

First-Order Low-Pass
 Filter

Low-Pass Filter

Low-pass filter passes low frequency signals and attenuates high-frequency signals

- Laplace transform, $x(0)=0$

$$
x(s)=\frac{a}{(s+a)} u(s)
$$

- Frequency response, $s=j \omega$

$$
x(j \omega)=\frac{a}{(j \omega+a)} u(j \omega)
$$

Response of $1^{\text {st }}$-Order Low-Pass Filters to Step Input and Initial Condition

$$
\begin{aligned}
\dot{x}(t) & =-a x(t)+a u(t) \\
a & =0.1,1, \text { or } 10
\end{aligned}
$$

Frequency Response of Dynamic Systems

Response of $1^{\text {st }}$-Order Low-Pass Filters to Sine-Wave Inputs

Response of $1^{\text {st }}$-Order LowPass Filters to White Noise

Relationship of Input Frequencies to Filter Bandwidth

Bode Plot Asymptotes, Departures, and Phase Angles for $1^{\text {st-Order Lags }}$

- General shape of amplitude ratio governed by asymptotes
- Slope of asymptotes changes by multiples of $\pm 20 \mathrm{~dB} / \mathrm{dec}$ at poles or zeros
- Actual AR departs from asymptotes
- AR asymptotes of a real pole
- When $\omega=0$, slope $=0 \mathrm{~dB} /$ dec
- When $\omega \geq \lambda$, slope $=-20 \mathrm{~dB} /$ dec
- Phase angle of a real, negative pole
- When $\omega=0, \varphi=0^{\circ}$
- When $\omega=\lambda, \varphi=-45^{\circ}$
- When $\omega->\infty, \varphi->-90^{\circ}$
$x(j \omega)=\frac{a}{(j \omega+a)} u(j \omega)$
First-Order Lag Bode Plot

$2^{\text {nd }}$-Order Low-Pass Filter

$$
\ddot{x}(t)=-2 \zeta \omega_{n} \dot{x}(t)-\omega_{n}^{2} x(t)+\omega_{n}^{2} u(t)
$$

Laplace transform, I.C. = 0

$$
x(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} u(s)
$$

Frequency response, $s=j \omega$

$$
x(j \omega)=\frac{\omega_{n}^{2}}{(j \omega)^{2}+2 \zeta \omega_{n}(j \omega)+\omega_{n}^{2}} u(j \omega)
$$

$2^{\text {nd-Order Step Response }}$

Amplitude Ratio Asymptotes and Departures of Second-Order Bode Plots (No Zeros)

- AR asymptotes of a pair of complex poles
- When $\omega=0$, slope $=0 \mathrm{~dB} / \mathrm{dec}$
- When $\omega \geq \omega_{n}$, slope $=-40 \mathrm{~dB} /$ dec
- Height of resonant peak depends on damping ratio

Phase Angles of Second-Order Bode Plots (No Zeros)

- Phase angle of a pair of complex negative poles
- When $\omega=0, \varphi=0^{\circ}$
- When $\omega=\omega_{n}, \varphi=-$ 90°
- When ω-> ∞, φ-> 180°
- Abruptness of phase shift depends on damping ratio

Transformation of the System Equations

Time-Domain System Equations

$$
\begin{gathered}
\dot{\mathbf{x}}(t)=\mathbf{F} \mathbf{x}(t)+\mathbf{G} \mathbf{u}(t) \\
\mathbf{y}(t)=\mathbf{H}_{\mathbf{x}} \mathbf{x}(t)+\mathbf{H}_{\mathbf{u}} \mathbf{u}(t)
\end{gathered}
$$

Laplace Transforms of System Equations

$$
\begin{gathered}
s \mathbf{x}(s)-\mathbf{x}(0)=\mathbf{F} \mathbf{x}(s)+\mathbf{G} \mathbf{u}(s) \\
\mathbf{x}(s)=[s \mathbf{I}-\mathbf{F}]^{-1}[\mathbf{x}(0)+\mathbf{G} \mathbf{u}(s)] \\
\mathbf{y}(s)=\mathbf{H}_{\mathbf{x}} \mathbf{x}(s)+\mathbf{H}_{\mathbf{u}} \mathbf{u}(s)
\end{gathered}
$$

Transfer Function Matrix

Laplace Transform of Output Vector

$$
\begin{aligned}
\mathbf{y}(s)= & \mathbf{H}_{\mathbf{x}} \mathbf{x}(s)+\mathbf{H}_{\mathbf{u}} \mathbf{u}(s)=\mathbf{H}_{\mathbf{x}}[s \mathbf{I}-\mathbf{F}]^{-1}[\mathbf{x}(0)+\mathbf{G} \mathbf{u}(s)]+\mathbf{H}_{\mathbf{u}} \mathbf{u}(s) \\
= & {\left[\mathbf{H}_{\mathbf{x}}(s \mathbf{I}-\mathbf{F})^{-1} \mathbf{G}+\mathbf{H}_{\mathbf{u}}\right] \mathbf{u}(s)+\mathbf{H}_{\mathbf{x}}[s \mathbf{I}-\mathbf{F}]^{-1} \mathbf{x}(0) } \\
& =\text { Control Effect + Initial Condition Effect }
\end{aligned}
$$

Transfer Function Matrix relates control input to system output
with $H_{u}=0$ and neglecting initial condition

$$
\boldsymbol{H}(s)=\mathbf{H}_{\mathbf{x}}[s \mathbf{I}-\mathbf{F}]^{-1} \mathbf{G} \quad\left(\begin{array}{lll}
r & x & m
\end{array}\right)
$$

Scalar Frequency Response from Transfer Function Matrix

Transfer function matrix with $s=j \omega$

$$
\boldsymbol{H}(j \omega)=\mathbf{H}_{\mathbf{x}}[j \omega \mathbf{I}-\mathbf{F}]^{-1} \mathbf{G} \quad\left(\begin{array}{lll}
& x & m
\end{array}\right)
$$

$$
\begin{gathered}
\frac{\Delta y_{i}(s)}{\Delta u_{j}(s)}=\boldsymbol{H}_{i j}(j \omega)=\mathbf{H}_{\mathbf{x}_{i}}[j \omega \mathbf{I}-\mathbf{F}]^{-1} \mathbf{G}_{j} \quad(r x m) \\
\mathbf{H}_{\mathbf{x}_{i}}=i^{\text {th }} \text { row of } \mathbf{H}_{\mathbf{x}} \\
\mathbf{G}_{j}=j^{\text {th }} \text { column of } \mathbf{G}
\end{gathered}
$$

Second-Order Transfer Function

Second-order dynamic system

$$
\begin{aligned}
\dot{\mathbf{x}}(t)=\left[\begin{array}{l}
\dot{x}_{1}(t) \\
\dot{x}_{2}(t)
\end{array}\right] & =\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & f_{22}
\end{array}\right]\left[\begin{array}{l}
u_{1}(t) \\
u_{2}(t)
\end{array}\right] \\
\mathbf{y}(t) & =\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
\end{aligned}
$$

Second-order transfer function matrix

$$
\begin{aligned}
& \boldsymbol{H}(s)=\mathbf{H}_{\mathbf{x}} \mathbf{A}(s) \mathbf{G}=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right] \frac{\operatorname{adj}\left[\begin{array}{cc}
\left(s-f_{11}\right) & -f_{12} \\
-f_{21} & \left(s-f_{22}\right)
\end{array}\right]}{\operatorname{det}\left(\begin{array}{ll}
\left(s-f_{11}\right) & -f_{12} \\
-f_{21} & \left(s-f_{22}\right)
\end{array}\right)} \begin{array}{l}
\left.\begin{array}{ll}
(r \times n)(n \times n)(n \times m) \\
g_{11} & g_{12} \\
g_{21} & f_{22}
\end{array}\right] \\
(n \times m)=(2 \times 2)
\end{array} \\
& (n=m=r=2)
\end{aligned}
$$

Scalar Transfer Function from $\Delta \mathbf{u}_{\mathbf{j}}$ to $\Delta \mathbf{y}_{\mathbf{i}}$

$$
H_{i j}(s)=\frac{k_{i j} n_{i j}(s)}{\Delta(s)}=\frac{k_{i j}\left(s^{q}+b_{q-1} s^{q-1}+\ldots+b_{1} s+b_{0}\right)}{\left(s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}\right)}
$$

Just one element of the matrix, H(s)
Denominator polynomial contains n roots Each numerator term is a polynomial with q zeros, where q varies from term to term and $\leq n-1$

$$
=\frac{k_{i j}\left(s-z_{1}\right)_{i j}\left(s-z_{2}\right)_{i j} \ldots\left(s-z_{q}\right)_{i j}}{\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right) \ldots\left(s-\lambda_{n}\right)}
$$

Scalar Frequency Response Function

Substitute: $\mathbf{s}=\mathbf{j} \omega$

$$
\begin{aligned}
H_{i j}(j \omega) & =\frac{k_{i j}\left(j \omega-z_{1}\right)_{i j}\left(j \omega-z_{2}\right)_{i j} \ldots\left(j \omega-z_{q}\right)_{i j}}{\left(j \omega-\lambda_{1}\right)\left(j \omega-\lambda_{2}\right) \ldots\left(j \omega-\lambda_{n}\right)} \\
& =a(\omega)+j b(\omega) \rightarrow A R(\omega) e^{j \phi(\omega)}
\end{aligned}
$$

Frequency response is a complex function of input frequency, ω Real and imaginary parts, or
** Amplitude ratio and phase angle **

MATLAB Bode Plot with asymp.m

http://www.mathworks.com/matlabcentral/
http://www.mathworks.com/matlabcentral/fileexchange/10183-bode-plot-with-asymptotes
2nd_Order Pitch Rate Frequency Response, with zero

Desirable Open-Loop Frequency Response Characteristics (Bode)

- High gain (amplitude) at low frequency

- Desired response is slowly varying
- Low gain at high frequency
- Random errors vary rapidly
- Crossover region is problem-specific

Examples of Proportional LQ Regulator Response

Example: Open-Loop Stable and Unstable 2 ${ }^{\text {nd }}$-Order LTI System Response to Initial Condition

Example: Stabilizing Effect of Linear-

 Quadratic Regulators for Unstable $2^{\text {nd }}-O r d e r$ System$\min _{u} J=\min _{u}\left[\frac{1}{2} \int_{0}^{\infty}\left(x_{1}^{2}+x_{2}^{2}+r u^{2}\right) d t\right]$

$$
u(t)=-\left[\begin{array}{ll}
c_{1} & c_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=-c_{1} x_{1}(t)-c_{2} x_{2}(t)
$$

For the unstable system

$r=1$	
Control Gain $(\mathrm{C})=$	
0.2620	1.0857
Riccati Matrix $(\mathrm{S})=$	
2.2001	0.0291
0.0291	0.1206
Closed-Loop Eigenvalues $=$	
-6.4061	
-2.8656	

$r=100$	
Control Gain $(C)=$	
0.0028	0.1726
Riccati Matrix $(\mathrm{S})=$	
30.7261	0.0312
0.0312	1.9183

Closed-Loop Eigenvalues $=$ $-0.5269+3.9683 i$ $-0.5269-3.9683 i$

Example: Stabilizing/Filtering Effect of LQ Regulators for the Unstable $2^{\text {nd }}$ Order System

Example: Open-Loop Response of the Stable $2^{\text {nd }}$-Order System to Random Disturbance

Example: Disturbance Response of Unstable System with Two LQRs

LQ Regulators with Output Vector Cost Functions

Quadratic

Weighting of the
Output

$J=\frac{1}{2} \int_{0}^{\infty}\left[\Delta \mathbf{y}^{T}(t) \mathbf{Q}_{\mathbf{y}} \Delta \mathbf{y}(t)\right] d t$
$=\frac{1}{2} \int_{0}^{\infty}\left\{\left[\mathbf{H}_{\mathbf{x}} \Delta \mathbf{x}(t)+\mathbf{H}_{\mathbf{u}} \Delta \mathbf{u}(t)\right]^{T} \mathbf{Q}_{\mathbf{y}}\left[\mathbf{H}_{\mathbf{x}} \Delta \mathbf{x}(t)+\mathbf{H}_{\mathbf{u}} \Delta \mathbf{u}(t)\right]\right\} d t$

$$
\begin{aligned}
\min _{u} J= & \min _{u} \frac{1}{2} \int_{0}^{\infty}\left\{\left[\begin{array}{ll}
\Delta \mathbf{x}^{T}(t) & \Delta \mathbf{u}^{T}(t)
\end{array}\right]\left[\begin{array}{cc}
\mathbf{H}_{\mathbf{x}}{ }^{T} \mathbf{Q}_{\mathbf{y}} \mathbf{H}_{\mathbf{x}} & \mathbf{H}_{\mathbf{x}}{ }^{T} \mathbf{Q}_{\mathbf{y}} \mathbf{H}_{\mathbf{u}} \\
\mathbf{H}_{\mathbf{u}}{ }^{T} \mathbf{Q}_{\mathbf{y}} \mathbf{H}_{\mathbf{x}} & \mathbf{H}_{\mathbf{u}}{ }^{T} \mathbf{Q}_{\mathbf{y}} \mathbf{H}_{\mathbf{u}}+\mathbf{R}_{o}
\end{array}\right]\left[\begin{array}{l}
\Delta \mathbf{x}(t) \\
\Delta \mathbf{u}(t)
\end{array}\right]\right\} d t \\
& \min _{u} J \triangleq \min _{u} \frac{1}{2} \int_{0}^{\infty}\left\{\left[\begin{array}{ll}
\Delta \mathbf{x}^{T}(t) & \Delta \mathbf{u}^{T}(t)
\end{array}\right]\left[\begin{array}{cc}
\mathbf{Q}_{O} & \mathbf{M}_{o} \\
\mathbf{M}_{O}^{T} & \mathbf{R}_{o}+\mathbf{R}_{o}
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{x}(t) \\
\Delta \mathbf{u}(t)
\end{array}\right]\right\} d t
\end{aligned}
$$

$$
\begin{equation*}
\Delta \mathbf{u}(t)=\Delta \mathbf{u}_{c}(t)-\mathbf{C}_{o} \Delta \mathbf{x}(t) \tag{29}
\end{equation*}
$$

State Rate Can Be Expressed as an Output to be Minimized

$$
\begin{aligned}
& \Delta \dot{\mathbf{x}}(t)=\mathbf{F} \Delta \mathbf{x}(t)+\mathbf{G} \Delta \mathbf{u}(t) \\
& \Delta \mathbf{y}(t)=\mathbf{H}_{\mathbf{x}} \Delta \mathbf{x}(t)+\mathbf{H}_{\mathbf{u}} \Delta \mathbf{u}(t) \triangleq \mathbf{F} \Delta \mathbf{x}(t)+\mathbf{G} \Delta \mathbf{u}(t) \\
& J=\frac{1}{2} \int_{0}^{\infty}\left[\Delta \mathbf{y}^{T}(t) \mathbf{Q}_{\mathbf{y}} \Delta \mathbf{y}(t)\right] d t=\frac{1}{2} \int_{0}^{\infty}\left[\Delta \dot{\mathbf{x}}^{T}(t) \mathbf{Q}_{\mathbf{y}} \Delta \dot{\mathbf{x}}(t)\right] d t
\end{aligned}
$$

$$
\begin{aligned}
& \triangleq \frac{1}{2} \int_{0}^{\infty}\left\{\left[\begin{array}{ll}
\Delta \mathbf{x}^{T}(t) & \Delta \mathbf{u}^{T}(t)
\end{array}\right]\left[\begin{array}{cc}
\mathbf{Q}_{S R} & \mathbf{M}_{S R} \\
\mathbf{M}_{S R}^{T} & \mathbf{R}_{S R}+\mathbf{R}_{o}
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{x}(t) \\
\Delta \mathbf{u}(t)
\end{array}\right]\right\} d t \\
& \Delta \mathbf{u}(t)=\Delta \mathbf{u}_{C}(t)-\mathbf{C}_{S R} \Delta \mathbf{x}(t)
\end{aligned}
$$

Implicit ModelFollowing LQ Regulator

Simulator aircraft dynamics

$$
\Delta \dot{\mathbf{x}}(t)=\mathbf{F} \Delta \mathbf{x}(t)+\mathbf{G} \Delta \mathbf{u}(t)
$$

Ideal aircraft dynamics

$\Delta \dot{\mathbf{x}}_{M}(t)=\mathbf{F}_{M} \Delta \mathbf{x}_{M}(t)$
Feedback control law
$\Delta \mathbf{u}(t)=\Delta \mathbf{u}_{C}(t)-\mathbf{C}_{I M F} \Delta \mathbf{x}(t)$

Implicit Model-Following

LQ Regulator

$$
\begin{gathered}
\Delta \dot{\mathbf{x}}(t)=\mathbf{F} \Delta \mathbf{x}(t)+\mathbf{G} \Delta \mathbf{u}(t) \\
\Delta \dot{\mathbf{x}}_{M}(t)=\mathbf{F}_{M} \Delta \mathbf{x}_{M}(t)
\end{gathered}
$$

If simulation is successful,

$$
\begin{gathered}
\Delta \mathbf{x}_{M}(t) \approx \Delta \mathbf{x}(t) \\
\text { and }
\end{gathered}
$$

$$
\Delta \dot{\mathbf{x}}_{M}(t) \approx \mathbf{F}_{M} \Delta \mathbf{x}(t)
$$

Implicit Model-Following LQ Regulator

Cost function penalizes difference between actual and ideal model dynamics

$$
\begin{aligned}
& J=\frac{1}{2} \int_{0}^{\infty}\left\{\left[\Delta \dot{\mathbf{x}}(t)-\Delta \dot{\mathbf{x}}_{M}(t)\right]^{T} \mathbf{Q}_{M}\left[\Delta \dot{\mathbf{x}}(t)-\Delta \dot{\mathbf{x}}_{M}(t)\right]\right\} d t
\end{aligned}
$$

Therefore, ideal model is implicit in the optimizing feedback control law

$$
\begin{equation*}
\Delta \mathbf{u}(t)=\Delta \mathbf{u}_{C}(t)-\mathbf{C}_{I M F} \Delta \mathbf{x}(t) \tag{33}
\end{equation*}
$$

Proportional-Derivative Control

Basic LQ regulators provide proportional control

$$
\Delta \mathbf{u}(t)=-\mathbf{C} \Delta \mathbf{x}(t)+\Delta \mathbf{u}_{C}(t)
$$

Derivative feedback can either quicken or slow system response ("lead" or "lag"), depending on the control gain sign

$$
\Delta \mathbf{u}(t)=-\mathbf{C}_{P} \Delta \mathbf{x}(t)-\mathbf{C}_{D} \Delta \dot{\mathbf{x}}(t)+\Delta \mathbf{u}_{C}(t)
$$

How can proportional-derivative $(P D)$ control be implemented with an $L Q$ regulator?

Explicit Proportional-Derivative Control

$$
\Delta \mathbf{u}(t)=-\mathbf{C}_{P} \Delta \mathbf{x}(t) \pm \mathbf{C}_{D} \Delta \dot{\mathbf{x}}(t)+\Delta \mathbf{u}_{C}(t)
$$

Substitute for the derivative

$$
\begin{aligned}
& \Delta \mathbf{u}(t)=-\mathbf{C}_{P} \Delta \mathbf{x}(t) \pm \mathbf{C}_{D}[\mathbf{F} \Delta \mathbf{x}(t)+\mathbf{G} \Delta \mathbf{u}(t)]+\Delta \mathbf{u}_{C}(t) \\
& {\left[\mathbf{I} \mp \mathbf{C}_{D} \mathbf{G}\right] \Delta \mathbf{u}(t)=-\mathbf{C}_{P} \Delta \mathbf{x}(t) \pm \mathbf{C}_{D} \mathbf{F} \Delta \mathbf{x}(t)+\Delta \mathbf{u}_{C}(t)}
\end{aligned}
$$

Structure is the same as that of proportional control

$$
\begin{aligned}
\Delta \mathbf{u}(t)= & {\left[\mathbf{I} \mp \mathbf{C}_{D} \mathbf{G}\right]^{-1}\left[-\left(\mathbf{C}_{P} \mp \mathbf{C}_{D} \mathbf{F}\right) \Delta \mathbf{x}(t)+\Delta \mathbf{u}_{C}(t)\right] } \\
& \triangleq-\mathbf{C}_{P D} \Delta \mathbf{x}(t)+\left[\mathbf{I} \mp \mathbf{C}_{D} \mathbf{G}\right]^{-1} \Delta \mathbf{u}_{C}(t)
\end{aligned}
$$

Implement as ad hoc modification of proportional LQ control, e.g., $\quad \mathbf{C}_{D}=\varepsilon \mathbf{C}_{P_{L L}}$

Inverse Problem: Given a stabilizing gain matrix, $\mathrm{C}_{P D}$, does it minimize some (unknown) cost function? [TBD]

Implicit Proportional-Derivative Control

Add state rate, i.e., the derivative, to a standard cost function Include system dynamics in the cost function

$$
J=\frac{1}{2} \int_{0}^{\infty}\left[\Delta \mathbf{x}^{T}(t) \mathbf{Q}_{\mathbf{x}} \Delta \mathbf{x}(t) \pm \Delta \dot{\mathbf{x}}^{T}(t) \mathbf{Q}_{\dot{\mathbf{x}}} \Delta \dot{\mathbf{x}}(t)+\Delta \mathbf{u}^{T}(t) \mathbf{R} \Delta \mathbf{u}(t)\right] d t
$$

Penalty/reward for fast motions

$$
\begin{aligned}
& J=\frac{1}{2} \int_{0}^{\infty}\left\{\Delta \mathbf{x}^{T}(t) \mathbf{Q}_{\mathbf{x}} \Delta \mathbf{x}(t) \pm[\mathbf{F} \Delta \mathbf{x}(t)+\mathbf{G} \Delta \mathbf{u}(t)]^{T} \mathbf{Q}_{\mathbf{x}}[\mathbf{F} \Delta \mathbf{x}(t)+\mathbf{G} \Delta \mathbf{u}(t)]+\Delta \mathbf{u}^{T}(t) \mathbf{R} \Delta \mathbf{u}(t)\right\} d t
\end{aligned}
$$

Must verify guaranteed stability criteria

$$
\Delta \mathbf{u}(t)=-\mathbf{C}_{P D} \Delta \mathbf{x}(t)+\Delta \mathbf{u}_{C}(t)
$$

Cost Functions with Augmented State Vector

Integral Compensation Can Reduce Steady-State Errors

- Sources of Steady-State Error
- Constant disturbance
- Errors in system dynamic model
- Selector matrix, H_{l}, can reduce or mix integrals in feedback

$$
\begin{gathered}
\Delta \dot{\mathbf{x}}(t)=\mathbf{F} \Delta \mathbf{x}(t)+\mathbf{G} \Delta \mathbf{u}(t) \\
\Delta \dot{\xi}(t)=\mathbf{H}_{I} \Delta \mathbf{x}(t)
\end{gathered}
$$

LQ ProportionalIntegral (PI) Control

$$
\begin{gathered}
\Delta \mathbf{u}(t)=-\mathbf{C}_{B} \Delta \mathbf{x}(t)-\mathbf{C}_{I} \int_{0}^{t} \mathbf{H}_{I} \Delta \mathbf{x}(\tau) d \tau \\
\triangleq-\mathbf{C}_{B} \Delta \mathbf{x}(t)-\mathbf{C}_{l} \Delta \xi(t)+\Delta \mathbf{u}_{C}(t)
\end{gathered}
$$

where the integral state is

$$
\begin{gathered}
\xi(t) \triangleq \int_{0}^{t} \mathbf{H}_{I} \Delta \mathbf{x}(\tau) d \tau \\
\operatorname{dim}\left(\mathbf{H}_{I}\right)=m \times n
\end{gathered}
$$

Integral State is Added to the Cost Function and the Dynamic Model

$$
\begin{aligned}
& \min _{\Delta \mathbf{u}} J= \frac{1}{2} \int_{0}^{\infty}\left[\Delta \mathbf{x}^{T}(t) \mathbf{Q}_{\mathbf{x}} \Delta \mathbf{x}(t)+\Delta \xi^{T}(t) \mathbf{Q}_{\xi} \Delta \xi(t)+\Delta \mathbf{u}^{T}(t) \mathbf{R} \Delta \mathbf{u}(t)\right] d t \\
&= \frac{1}{2} \int_{0}^{\infty}\left[\Delta \boldsymbol{\chi}^{T}(t)\left[\begin{array}{cc}
\mathbf{Q}_{\mathbf{x}} & \mathbf{0} \\
\mathbf{0} & \mathbf{Q}_{\xi}
\end{array}\right] \Delta \boldsymbol{\chi}(t)+\Delta \mathbf{u}^{T}(t) \mathbf{R} \Delta \mathbf{u}(t)\right] d t \\
& \text { subject to } \Delta \dot{\boldsymbol{\chi}}(t)=\mathbf{F}_{\chi} \Delta \boldsymbol{\chi}(t)+\mathbf{G}_{\chi} \Delta \mathbf{u}(t)
\end{aligned}
$$

$$
\begin{gathered}
\Delta \mathbf{u}(t)=-\mathbf{C}_{\chi} \Delta \chi(t)+\Delta \mathbf{u}_{C}(t) \\
=-\mathbf{C}_{B} \Delta \mathbf{x}(t)-\mathbf{C}_{l} \Delta \xi(t)+\Delta \mathbf{u}_{C}(t)
\end{gathered}
$$

Integral State is Added to the Cost Function and the Dynamic Model

$$
\begin{gathered}
\Delta \mathbf{u}(t)=-\mathbf{C}_{\chi} \Delta \chi(t)+\Delta \mathbf{u}_{C}(t) \\
=-\mathbf{C}_{B} \Delta \mathbf{x}(t)-\mathbf{C}_{I} \Delta \boldsymbol{\xi}(t)+\Delta \mathbf{u}_{C}(t)
\end{gathered}
$$

$$
\begin{gathered}
\Delta \mathbf{u}(s)=-\mathbf{C}_{\chi} \Delta \chi(s)+\Delta \mathbf{u}_{C}(s) \\
=-\mathbf{C}_{B} \Delta \mathbf{x}(s)-\mathbf{C}_{I} \Delta \xi(s)+\Delta \mathbf{u}_{C}(s) \\
=-\mathbf{C}_{B} \Delta \mathbf{x}(s)-\mathbf{C}_{I} \frac{\mathbf{H}_{\mathbf{x}} \Delta \mathbf{x}(s)}{s}+\Delta \mathbf{u}_{C}(s)
\end{gathered}
$$

$$
\begin{gathered}
\Delta \mathbf{u}(s)=-\frac{\mathbf{C}_{B} s \Delta \mathbf{x}(s)+\mathbf{C}_{I} \mathbf{H}_{\mathbf{x}} \Delta \mathbf{x}(s)}{s}+\Delta \mathbf{u}_{C}(s) \\
=-\frac{\left[\mathbf{C}_{B} s+\mathbf{C}_{I} \mathbf{H}_{\mathbf{x}}\right]}{s} \Delta \mathbf{x}(s)+\Delta \mathbf{u}_{C}(s)
\end{gathered}
$$

Form of ($m \times n$) Bode Plots from $\Delta \mathbf{x}$ to $\Delta \mathbf{u}$?

Actuator Dynamics and Proportional-Filter LQ Regulators

Proportional LQ Regulator: HighFrequency Control in Response to High-Frequency Disturbances

Good disturbance rejection, but may high bandwidth may be unrealistic

Actuator Dynamics May Impact System Response

Actuator Dynamics May Affect System Response

Augment state dynamics to include actuator dynamics

$$
\left[\begin{array}{c}
\Delta \dot{\mathbf{x}}(t) \\
\Delta \dot{\mathbf{u}}(t)
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{F} & \mathbf{G} \\
\mathbf{0} & -\mathbf{K}
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{x}(t) \\
\Delta \mathbf{u}(t)
\end{array}\right]+\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{I}
\end{array}\right] \Delta \mathbf{v}(t)
$$

Control variable is actuator forcing function

$$
\Delta \mathbf{v}(t)=\Delta \dot{\mathbf{u}}_{\text {Integrator }}(t)=-\mathbf{C}_{B} \Delta \mathbf{x}(t)+\Delta \mathbf{v}_{C}(t) \text { is sub -optimal }
$$

LQ Regulator with Actuator Dynamics

Cost function is minimized with redefined state and control vectors

$$
\Delta \boldsymbol{\chi}(t)=\left[\begin{array}{c}
\Delta \mathbf{x}(t) \\
\Delta \mathbf{u}(t)
\end{array}\right] ; \quad \mathbf{F}_{\chi}=\left[\begin{array}{cc}
\mathbf{F} & \mathbf{G} \\
\mathbf{0} & -\mathbf{K}
\end{array}\right] ; \quad \mathbf{G}_{\chi}=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{I}
\end{array}\right]
$$

$$
\begin{aligned}
\min _{\Delta \mathbf{u}} J= & \frac{1}{2} \int_{0}^{\infty}\left[\Delta \mathbf{x}^{T}(t) \mathbf{Q}_{\mathbf{x}} \Delta \mathbf{x}(t)+\Delta \mathbf{u}^{T}(t) \mathbf{R}_{\mathbf{u}} \Delta \mathbf{u}(t)+\Delta \mathbf{v}^{T}(t) \mathbf{R}_{\mathbf{v}} \Delta \mathbf{v}(t)\right] d t \\
= & \frac{1}{2} \int_{0}^{\infty}\left[\Delta \boldsymbol{\chi}^{T}(t)\left[\begin{array}{cc}
\mathbf{Q}_{\mathbf{x}} & \mathbf{0} \\
\mathbf{0} & \mathbf{R}_{\mathbf{u}}
\end{array}\right] \Delta \boldsymbol{\chi}(t)+\Delta \mathbf{v}^{T}(t) \mathbf{R}_{\mathbf{v}} \Delta \mathbf{v}(t)\right] d t \\
& \text { subject to } \Delta \dot{\boldsymbol{\chi}}(t)=\mathbf{F}_{\chi} \Delta \boldsymbol{\chi}(t)+\mathbf{G}_{\chi} \Delta \mathbf{v}(t)
\end{aligned}
$$

LQ Regulator with Actuator Dynamics

$$
\begin{gathered}
\Delta \mathbf{v}(t)=-\mathbf{C}_{\chi} \Delta \chi(t)+\Delta \mathbf{v}_{C}(t) \\
=-\mathbf{C}_{B} \Delta \mathbf{x}(t)-\mathbf{C}_{A} \Delta \mathbf{u}(t)+\Delta \mathbf{v}_{C}(t)
\end{gathered}
$$

$$
\Delta \mathbf{v}(s)=-\mathbf{C}_{B} \Delta \mathbf{x}(s)-\mathbf{C}_{A} \Delta \mathbf{u}(s)+\Delta \mathbf{v}_{C}(s)
$$

LQ Regulator with Actuator Dynamics

$$
\begin{gathered}
\Delta \dot{\mathbf{u}}(t)=-\mathbf{K} \Delta \mathbf{u}(t)-\mathbf{C}_{A} \Delta \mathbf{u}(t)-\mathbf{C}_{B} \Delta \mathbf{x}(t)+\Delta \mathbf{v}_{C}(t) \\
s \Delta \mathbf{u}(s)=-\mathbf{K} \Delta \mathbf{u}(s)-\mathbf{C}_{A} \Delta \mathbf{u}(s)-\mathbf{C}_{B} \Delta \mathbf{x}(s)+\Delta \mathbf{v}_{C}(s)+\Delta \mathbf{u}(0)
\end{gathered}
$$

Control Displacement

$$
\begin{gathered}
{\left[s \mathbf{I}+\mathbf{K}+\mathbf{C}_{A}\right] \Delta \mathbf{u}(s)=-\mathbf{C}_{B} \Delta \mathbf{x}(s)+\Delta \mathbf{v}_{C}(s)} \\
\Delta \mathbf{u}(s)=\left[s \mathbf{I}+\mathbf{K}+\mathbf{C}_{A}\right]^{-1}\left[-\mathbf{C}_{B} \Delta \mathbf{x}(s)+\Delta \mathbf{v}_{C}(s)\right]
\end{gathered}
$$

LQ Regulator with Artificial
 Actuator Dynamics

LQ control variable is derivative of actual system control

$$
\left[\begin{array}{c}
\Delta \dot{\mathbf{x}}(t) \\
\Delta \dot{\mathbf{u}}(t)
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{F} & \mathbf{G} \\
\mathbf{0} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\Delta \mathbf{x}(t) \\
\Delta \mathbf{u}(t)
\end{array}\right]+\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{I}
\end{array}\right] \Delta \mathbf{v}(t)
$$

$$
\Delta \mathbf{v}(t)=\Delta \dot{\mathbf{u}}_{I n t}(t)=-\mathbf{C}_{B} \Delta \mathbf{x}(t)-\mathbf{C}_{A} \Delta \mathbf{u}(t)+\Delta \mathbf{v}_{C}(t)
$$

Proportional-Filter (PF) LQ Regulator

$$
\Delta \boldsymbol{\chi}(t)=\left[\begin{array}{c}
\Delta \mathbf{x}(t) \\
\Delta \mathbf{u}(t)
\end{array}\right] ; \quad \mathbf{F}_{\chi}=\left[\begin{array}{cc}
\mathbf{F} & \mathbf{G} \\
\mathbf{0} & \mathbf{0}
\end{array}\right] ; \quad \mathbf{G}_{\chi}=\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{I}
\end{array}\right]
$$

Optimal LQ Regulator

$$
\Delta \mathbf{v}(t)=\Delta \dot{\mathbf{u}}_{\text {Integrator }}(t)=-\mathbf{C}_{\chi} \Delta \boldsymbol{\chi}(t)+\Delta \mathbf{v}_{C}(t)
$$

C_{A} provides low-pass filtering effect on the control input

$$
\Delta \mathbf{u}(s)=\left[s \mathbf{I}+\mathbf{C}_{A}\right]^{-1}\left[-\mathbf{C}_{B} \Delta \mathbf{x}(s)+\Delta \mathbf{v}_{C}(s)\right]
$$

Proportional-Filter LQ Regulator Reduces High-Frequency Control Signals

2nd-Order System Response

... at the expense of decreased disturbance rejection

Next Time:

Linear-Quadratic Control
System Design

Supplemental Material

Implicit Model-Following LinearQuadratic Regulator

Model the response of one airplane with another using feedback control

Princeton Variable-Response Research Aircraft (VRA)

