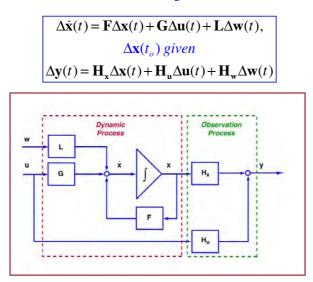
## **Time-Invariant Linear Quadratic Regulators**

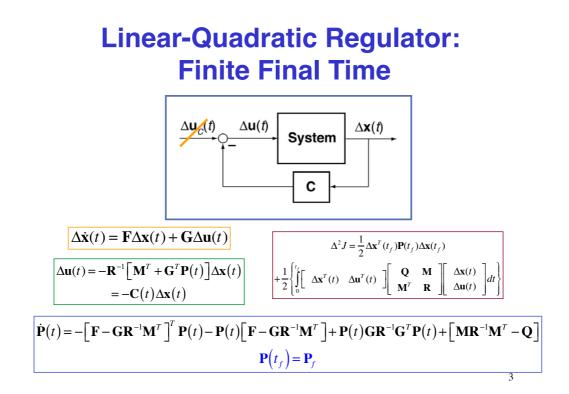
Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2015

- Asymptotic approach from time-varying to constant gains
- Elimination of cross weighting in cost function
- Controllability and observability of an LTI system
- Requirements for closed-loop stability
- Algebraic Riccati equation
- Equilibrium\_response to commands

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE546.html http://www.princeton.edu/~stengel/OptConEst.html

## Continuous-Time, Linear, Time-Invariant System Model





## Transformation of Variables to Eliminate Cost Function Cross Weighting

**Original LTI minimization problem** 

$$\underset{\Delta \mathbf{u}_{1}}{\min} J_{1} = \frac{1}{2} \int_{0}^{t_{f}} \left[ \Delta \mathbf{x}_{1}^{T}(t) \mathbf{Q}_{1} \Delta \mathbf{x}_{1}(t) + 2\Delta \mathbf{x}_{1}^{T}(t) \mathbf{M}_{1} \Delta \mathbf{u}_{1}(t) + \Delta \mathbf{u}_{1}(t) \mathbf{R}_{1} \Delta \mathbf{u}_{1}(t) \right] dt$$
subject to  $\Delta \dot{\mathbf{x}}_{1}(t) = \mathbf{F}_{1} \Delta \mathbf{x}_{1}(t) + \mathbf{G}_{1} \Delta \mathbf{u}_{1}(t)$ 

#### Can we find a transformation such that

$$\min_{\Delta \mathbf{u}_2} J_2 = \frac{1}{2} \int_0^{t_f} \left[ \Delta \mathbf{x}_2^T(t) \mathbf{Q}_2 \Delta \mathbf{x}_2(t) + \Delta \mathbf{u}_2^T(t) \mathbf{R}_2 \Delta \mathbf{u}_2(t) \right] dt = \min_{\Delta \mathbf{u}_1} J_1$$
  
subject to  $\Delta \dot{\mathbf{x}}_2(t) = \mathbf{F}_2 \Delta \mathbf{x}_2(t) + \mathbf{G}_2 \Delta \mathbf{u}_2(t)$ 

## **Artful Manipulation**

Rewrite integrand of  $J_1$  to eliminate cross weighting of state and control

$$\Delta \mathbf{x}_{1}^{T}(t) \mathbf{Q}_{1} \Delta \mathbf{x}_{1}(t) + 2\Delta \mathbf{x}_{1}^{T}(t) \mathbf{M}_{1} \Delta \mathbf{u}_{1}(t) + \Delta \mathbf{u}_{1}(t) \mathbf{R}_{1} \Delta \mathbf{u}_{1}(t)$$
$$= \Delta \mathbf{x}_{1}^{T}(t) \left( \mathbf{Q}_{1} - \mathbf{M}_{1} \mathbf{R}_{1}^{-1} \mathbf{M}_{1}^{T} \right) \Delta \mathbf{x}_{1}(t)$$
$$+ \left[ \Delta \mathbf{u}_{1}(t) + \mathbf{R}_{1}^{-1} \mathbf{M}_{1}^{T} \Delta \mathbf{x}_{1}(t) \right]^{T} \mathbf{R}_{1} \left[ \Delta \mathbf{u}_{1}(t) + \mathbf{R}_{1}^{-1} \mathbf{M}_{1}^{T} \Delta \mathbf{x}_{1}(t) \right]$$
$$\boxed{\triangleq \Delta \mathbf{x}_{1}^{T}(t) \mathbf{Q}_{2} \Delta \mathbf{x}_{1}(t) + \Delta \mathbf{u}_{2}^{T}(t) \mathbf{R}_{1} \Delta \mathbf{u}_{2}(t)}$$

The transformation produces the following equivalences

$$\Delta \mathbf{x}_{2}(t) = \Delta \mathbf{x}_{1}(t)$$
  

$$\Delta \mathbf{u}_{2}(t) = \Delta \mathbf{u}_{1}(t) + \mathbf{R}_{1}^{-1} \mathbf{M}_{1}^{T} \Delta \mathbf{x}_{1}(t)$$
  

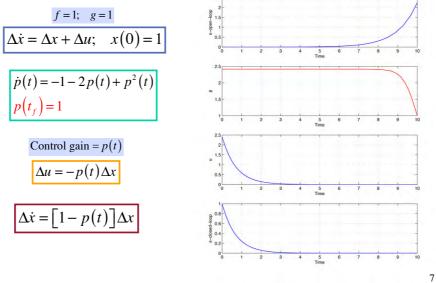
$$\mathbf{Q}_{2} = \mathbf{Q}_{1} - \mathbf{M}_{1} \mathbf{R}_{1}^{-1} \mathbf{M}_{1}^{T}$$
  

$$\mathbf{R}_{2} = \mathbf{R}_{1}$$

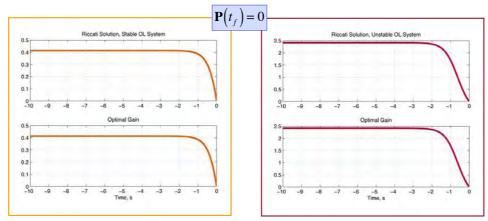
## (Q,R) and (Q,M,R) LQ Problems are Equivalent

| $\Delta \mathbf{x}_{2}(t) = \Delta \mathbf{x}_{1}(t) \Longrightarrow$ $\Delta \dot{\mathbf{x}}_{2}(t) = \Delta \dot{\mathbf{x}}_{1}(t)$                                                                                                                                                                                                                                                                                                                                                                                                                            | $\Delta \mathbf{u}_{2}(t) = \Delta \mathbf{u}_{1}(t) + \mathbf{R}_{1}^{-1} \mathbf{M}_{1}^{T} \Delta \mathbf{x}_{1}(t)$ $\mathbf{Q}_{2} = \mathbf{Q}_{1} - \mathbf{M}_{1} \mathbf{R}_{1}^{-1} \mathbf{M}_{1}^{T}$ $\mathbf{R}_{2} = \mathbf{R}_{1}$ |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $\Delta \dot{\mathbf{x}}_2(t) = \mathbf{F}_2 \Delta \mathbf{x}_2(t) + \mathbf{G}_2 \Delta \mathbf{u}_2(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                     |  |  |  |
| $\Delta \dot{\mathbf{x}}_{2}(t) = \mathbf{F}_{2} \Delta \mathbf{x}_{1}(t) + \mathbf{G}_{2} \left[ \Delta \mathbf{u}_{1}(t) + \mathbf{R}_{1}^{-1} \mathbf{M}_{1}^{T} \Delta \mathbf{x}_{1}(t) \right]$                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |  |  |  |
| $= \left(\mathbf{F}_{2} + \mathbf{R}_{1}^{-1}\mathbf{M}_{1}^{T}\right)\Delta\mathbf{x}_{1}(t) + \mathbf{G}_{2}\Delta\mathbf{u}_{1}(t)$                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     |  |  |  |
| $= \Delta \dot{\mathbf{x}}_1(t) = \mathbf{F}_1 \Delta \mathbf{x}_1(t) + \mathbf{G}_1 \Delta \mathbf{u}_1(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                     |  |  |  |
| $\mathbf{G}_{2} = \mathbf{G}_{1}$ $\mathbf{F}_{2} = \mathbf{F}_{1} - \mathbf{G}_{2}\mathbf{R}_{1}^{-1}\mathbf{M}_{1}^{T}$ $= \mathbf{F}_{1} - \mathbf{G}_{1}\mathbf{R}_{1}^{-1}\mathbf{M}_{1}^{T}$ $\mathbf{H}_{1} = \mathbf{H}_{1} - \mathbf{G}_{1}\mathbf{R}_{1}^{-1}\mathbf{M}_{1}^{T}$ $\mathbf{H}_{1} = \mathbf{H}_{1} - \mathbf{H}_{1}\mathbf{R}_{1}^{-1}\mathbf{H}_{1}^{T}$ $\mathbf{H}_{1} = \mathbf{H}_{1} - \mathbf{H}_{1}\mathbf{R}_{1}^{-1}\mathbf{H}_{1}^{T}$ $\mathbf{H}_{1} = \mathbf{H}_{1} - \mathbf{H}_{1}\mathbf{R}_{1}^{-1}\mathbf{H}_{1}^{T}$ |                                                                                                                                                                                                                                                     |  |  |  |

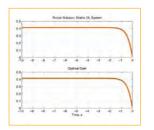




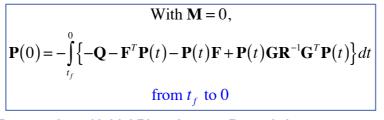
#### Riccati Solution and Control Gain for Open-Loop *Stable* and *Unstable* 1<sup>st</sup>-Order Systems



Variations in control gains are significant only in the last 10-20% of the illustrated time interval



## **P**(0) **Approaches Steady State as** $t_f \rightarrow \infty$



- Progression of initial Riccati matrix is monotonic with increasing final time
- Rate of change approaches zero with increasing final time

for 
$$t_{f_2} > t_{f_1}$$
  
 $\mathbf{P}_2(0) \ge \mathbf{P}_1(0)$ 

$$\frac{d\mathbf{P}(0)}{dt} \xrightarrow{t_f \to \infty} \mathbf{0}$$

## Algebraic Riccati Equation and Constant Control Gain Matrix

#### **Steady-state Riccati solution**

$$-\mathbf{Q} - \mathbf{F}^{T}\mathbf{P}(0) - \mathbf{P}(0)\mathbf{F} + \mathbf{P}(0)\mathbf{G}\mathbf{R}^{-1}\mathbf{G}^{T}\mathbf{P}(0) = \mathbf{0}$$

$$-\mathbf{Q} - \mathbf{F}^T \mathbf{P}_{SS} - \mathbf{P}_{SS} \mathbf{F} + \mathbf{P}_{SS} \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^T \mathbf{P}_{SS} = \mathbf{0}$$

#### Steady-state control gain matrix

$$\mathbf{C}_{ss} = \mathbf{R}^{-1}\mathbf{G}^{T}\mathbf{P}(\mathbf{0}|t_{f} \to \infty) = \mathbf{R}^{-1}\mathbf{G}^{T}\mathbf{P}_{ss}$$

#### **Controllability of a LTI System**

<u>Controllability</u>: All elements of the state can be brought from <u>arbitrary initial conditions</u> to zero in <u>finite time</u>

 $\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t)$  $\Delta \mathbf{x}(0) = \Delta \mathbf{x}_0 \qquad \Delta \mathbf{x}(t_{finite}) = \mathbf{0}$ 

System is Completely Controllable if

Controllability Matrix = **G FG**  $\cdots$  **F**<sup>*n*-1</sup>**G** has Rank *n* 

 $n \times nm$ 

11

### **Controllability Examples**

For non-zero coefficients

| $\mathbf{F} = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\zeta\omega_n \end{bmatrix};  \mathbf{G} = \begin{bmatrix} 0 \\ \omega_n^2 \end{bmatrix}$ $\begin{bmatrix} \mathbf{G}  \mathbf{F}\mathbf{G} \end{bmatrix} = \begin{bmatrix} 0 & \omega_n^2 \\ \omega_n^2 & -2\zeta\omega_n^3 \end{bmatrix} \Rightarrow  \text{Rank} = 2$ | $\mathbf{F} = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\zeta\omega_n \end{bmatrix};  \mathbf{G} = \begin{bmatrix} \omega_n^2 \\ 0 \end{bmatrix}$ $\begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} \end{bmatrix} = \begin{bmatrix} \omega_n^2 & 0 \\ 0 & -\omega_n^4 \end{bmatrix} \Rightarrow \text{ Rank} = 2$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{F} = \begin{bmatrix} 0 & 1 \\ 0 & b \end{bmatrix};  \mathbf{G} = \begin{bmatrix} b \\ 0 \end{bmatrix}$ $\begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} \end{bmatrix} = \begin{bmatrix} b & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow \text{ Rank} = 1$                                                                   | $\mathbf{F} = \begin{bmatrix} 0 & 1 \\ 0 & b \end{bmatrix};  \mathbf{G} = \begin{bmatrix} 0 \\ b \end{bmatrix}$ $\begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} \end{bmatrix} = \begin{bmatrix} 0 & b \\ b & b^2 \end{bmatrix} \Rightarrow \text{ Rank} = 2$                                                   |

# Requirements for Guaranteed Closed-Loop Stability

13

# **Optimal Cost with Feedback Control**

With terminal cost = 0

With 
$$\mathbf{u}(t) = -\mathbf{C}(t)\Delta \mathbf{x} = -\mathbf{R}^{-1}\mathbf{G}^{T}\mathbf{P}(t)\Delta \mathbf{x}$$
  
$$J^{*}(t_{f}) = \frac{1}{2}\int_{0}^{t_{f}} \left[\Delta \mathbf{x}^{*T}(t)\mathbf{Q}\Delta \mathbf{x}^{*}(t) + \Delta \mathbf{u}^{*T}(t)\mathbf{R}\Delta \mathbf{u}^{*}(t)\right]dt$$

Substitute optimal control law in cost function

$$=\frac{1}{2}\int_{0}^{t_{f}} \left[\Delta \mathbf{x}^{*T}(t)\mathbf{Q}\Delta \mathbf{x}^{*}(t) + \left[-\mathbf{C}(t)\Delta \mathbf{x}^{*}\right]^{T}(t)\mathbf{R}\left[-\mathbf{C}(t)\Delta \mathbf{x}^{*}\right]\right]dt$$
$$=\frac{1}{2}\int_{0}^{t_{f}} \left[\Delta \mathbf{x}^{*T}(t)\mathbf{Q}\Delta \mathbf{x}^{*}(t) + \Delta \mathbf{x}^{*T}(t)\mathbf{C}^{T}(t)\mathbf{R}\mathbf{C}(t)\Delta \mathbf{x}^{*}(t)\right]dt$$

### Optimal Cost with LQ Feedback Control

**Consolidate terms** 

$$J^{*}(t_{f}) = \frac{1}{2} \int_{0}^{t_{f}} \left[ \Delta \mathbf{x}^{*T}(t) \left[ \mathbf{Q} + \mathbf{C}^{T}(t) \mathbf{R}\mathbf{C}(t) \right] \Delta \mathbf{x}^{*}(t) \right] dt$$

From eq. 5.4-9, *OCE,* optimal cost depends only on the initial condition

$$J(t_f) = \frac{1}{2} \Delta \mathbf{x}^T(0) \mathbf{P}(0) \Delta \mathbf{x}(0)$$

15

## Optimal Quadratic Cost Function is Bounded

$$J * (t_f) = \frac{1}{2} \int_{0}^{t_f} \left[ \Delta \mathbf{x} *^T (t) \left[ \mathbf{Q} + \mathbf{C}^T (t) \mathbf{R} \mathbf{C} (t) \right] \Delta \mathbf{x} * (t) \right] dt$$

As final time goes to infinity

$$J^{*}(\infty) = \lim_{t_{f} \to \infty} \frac{1}{2} \int_{0}^{t_{f}} \left[ \Delta \mathbf{x}^{*T}(t) \left[ \mathbf{Q} + \mathbf{C}^{T}(t) \mathbf{R} \mathbf{C}(t) \right] \Delta \mathbf{x}^{*}(t) \right] dt$$
$$\triangleq \frac{1}{2} \int_{0}^{\infty} \left[ \Delta \mathbf{x}^{*T}(t) \left[ \mathbf{Q} + \mathbf{C}^{T} \mathbf{R} \mathbf{C} \right] \Delta \mathbf{x}^{*}(t) \right] dt = \frac{1}{2} \Delta \mathbf{x}^{T}(0) \mathbf{P} \Delta \mathbf{x}(0)$$
$$J \text{ is bounded and positive provided that } \qquad \mathbf{Q} > \mathbf{0}$$
$$\mathbf{R} > \mathbf{0}$$
Because J is bounded, C is a stabilizing gain

matrix

### Requirements for Guaranteeing Stability of the LQ Regulator

 $\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t) = [\mathbf{F} - \mathbf{G}\mathbf{C}] \Delta \mathbf{x}(t)$ 

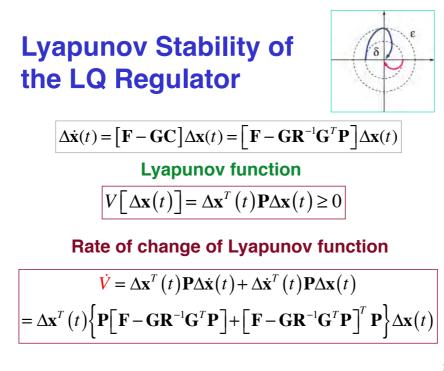
Closed-loop system is stable whether or not open-loop system is stable if ...

> Q > 0 R > 0

... and (F,G) is a controllable pair

Rank  $\begin{bmatrix} \mathbf{G} & \mathbf{F}\mathbf{G} & \cdots & \mathbf{F}^{n-1}\mathbf{G} \end{bmatrix} = \mathbf{n}$ 





## Lyapunov Stability of the LQ Regulator

**Algebraic Riccati equation** 

$$-\mathbf{Q} - \mathbf{F}^T \mathbf{P} - \mathbf{P} \mathbf{F} + \mathbf{P} \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^T \mathbf{P} = \mathbf{0}$$

Substituting in rate equation

$$\dot{\mathbf{V}} = \Delta \mathbf{x}^{T}(t) \Big\{ \mathbf{P} \Big[ \mathbf{F} - \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{P} \Big] + \Big[ \mathbf{F} - \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{P} \Big]^{T} \mathbf{P} \Big\} \Delta \mathbf{x}(t) \Big]$$
$$= -\Delta \mathbf{x}^{T}(t) \Big\{ \mathbf{Q} + \mathbf{P} \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^{T} \mathbf{P} \Big\} \Delta \mathbf{x}(t) \leq \mathbf{0}$$

Defining matrix is positive definite Therefore, closed-loop system is stable

19

## Less Restrictive Stability Requirements

Q may be *positive semi-definite* if (F,D) is an <u>observable pair</u>, where

$$\mathbf{Q} \triangleq \mathbf{D}^T \mathbf{D}$$
, where **D** may not be  $(n \times n)$ 

#### **Observability requirement**

Rank 
$$\begin{bmatrix} \mathbf{D}^T & \mathbf{F}^T \mathbf{D}^T & \cdots & (\mathbf{F}^T)^{n-1} \mathbf{D}^T \end{bmatrix} = \mathbf{n}$$

## **Observability Example**

| $\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 \\ -\omega_n^2 \end{bmatrix}$ | $\begin{bmatrix} 1 \\ -2\zeta\omega_n \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \mathbf{F}\mathbf{x}(t)$ |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| $y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix}$                                                                  | $\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \mathbf{H}\mathbf{x}(t)$                                                    |

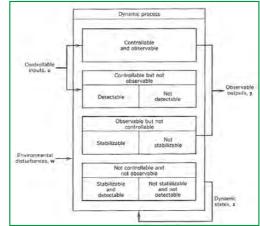
For non-zero coefficients

| $\begin{bmatrix} \mathbf{H}^T & \mathbf{F}^T \mathbf{H}^T \end{bmatrix} = \begin{bmatrix} 0 & -\omega_n^2 \\ 1 & -2\zeta\omega_n \end{bmatrix} \Rightarrow \text{ Rank} = 2$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

21

## Even Less Restrictive Stability Requirements

- If F contains stable modes, closed-loop stability is guaranteed if
  - (F,G) is a <u>stabilizable</u>
     <u>pair</u>
  - (F,D) is a <u>detectable</u> <u>pair</u>



## Stability Requirements with Cross Weighting

- If F contains stable modes, closed-loop stability is guaranteed if
  - [(F GR<sup>-1</sup>M<sup>7</sup>),G] is a <u>stabilizable pair</u>
  - [(F GR<sup>-1</sup>M<sup>7</sup>),D] is a <u>detectable pair</u>
  - $(Q GR^{-1}M^7) \ge 0$
  - R > 0

23

## Example: LQ Optimal Control of a First-Order LTI System

$$\Delta^{2}J = \frac{1}{2}(0)\Delta x^{2}(t_{f}) + \lim_{t_{f}\to\infty} \frac{1}{2}\int_{t_{o}}^{t_{f}} (q\Delta x^{2} + r\Delta u^{2})dt$$

$$Den-Loop System Control Law$$

$$\Delta \dot{x} = f\Delta x + g\Delta u$$

$$\Delta u = -\frac{gp}{r}\Delta x = -c\Delta x$$
Algebraic Riccati Equation
$$-q - 2fp + \frac{g^{2}p^{2}}{r} = 0$$

$$p^{2} - 2\frac{fr}{g^{2}}p - \frac{qr}{g^{2}} = 0$$

$$p^{2} - 2\frac{fr}{g^{2}}p - \frac{qr}{g^{2}} = 0$$

$$dx = -\frac{gp}{r}\Delta x =$$

## Example: LQ Optimal Control of a First-Order LTI System

Closed-Loop System  $\Delta \dot{x} = \left( f - \frac{g^2 p}{r} \right) \Delta x = (f - c) \Delta x$ Stability requires that

$$(f-c) < 0$$

If f < 0, then system is stable with no control (c = 0)

25

## Example: LQ Optimal Control of a First-Order LTI System

If 
$$f > 0$$
 (unstable), and  $r > 0$ , then  $\frac{fr}{g^2} > 0$ , and  

$$p = \frac{fr}{g^2} \left[ 1 + \sqrt{1 + \left(\frac{g^2}{fr}\right)^2 qr} \right]$$

If 
$$q \ge 0$$
, and  $g \ne 0$ , then  
 $p \xrightarrow{q \to 0} \frac{fr}{g^2} \Big[ 1 + \sqrt{1} \Big] = \frac{2fr}{g^2}$ 
and closed-loop system is, as  $q \to 0$ ,  
 $\left( f - \frac{g^2 p}{r} \right) = \left( f - \frac{g^2}{r} \frac{2fr}{g^2} \right) = (f - 2f) = -f$ 

Stable closed - loop system is "mirror image" of unstable open - loop system when q = 0

# Solution of the Algebraic Riccati Equation

## Solution Methods for the Continuous-Time Algebraic Riccati Equation

$$-\mathbf{Q} - \mathbf{F}^T \mathbf{P} - \mathbf{P} \mathbf{F} + \mathbf{P} \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^T \mathbf{P} = \mathbf{0}$$

- 1) Integrate Riccati differential equation to steady state
- 2) Explicit scalar equations for elements of P
  - a) Difficult for *n* > 3
  - b) May use symbolic math (*MATLAB Symbolic Math Toolbox, Mathematica*, ...)

## **Example: Scalar Solution for the Algebraic Riccati Equation**

$$-\mathbf{Q} - \mathbf{F}^T \mathbf{P} - \mathbf{P} \mathbf{F} + \mathbf{P} \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^T \mathbf{P} = \mathbf{0}$$

Second-order example

| $-\begin{bmatrix} q_{11} & 0 \\ 0 & q_{22} \end{bmatrix} - \begin{bmatrix} f_{11} \\ f_{21} \end{bmatrix}$                                       | $ \begin{array}{c} f_{12} \\ f_{22} \end{array} \right]^T \left[ \begin{array}{c} p_{11} \\ p_{12} \end{array} \right] $ | $ \begin{bmatrix} p_{12} \\ p_{22} \end{bmatrix} = \begin{bmatrix} p_{11} \\ p_{12} \end{bmatrix} $                | $ \begin{array}{c} p_{12} \\ p_{22} \end{array} \begin{bmatrix} f_{11} \\ f_{21} \end{bmatrix} $                         | $\begin{bmatrix} f_{12} \\ f_{22} \end{bmatrix}$     |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| $+ \left[ \begin{array}{cc} p_{11} & p_{12} \\ p_{12} & p_{22} \end{array} \right] \left[ \begin{array}{c} g_{11} \\ g_{21} \end{array} \right]$ | $ \begin{array}{c} g_{12} \\ g_{22} \end{array} \right] \left[ \begin{array}{c} r_{11} \\ 0 \end{array} \right] $        | $\begin{array}{c} 0\\ r_{22} \end{array} \right]^{-1} \left[ \begin{array}{c} g_{11}\\ g_{21} \end{array} \right]$ | $ \begin{array}{c} g_{12} \\ g_{22} \end{array} \right]^T \left[ \begin{array}{c} p_{11} \\ p_{12} \end{array} \right] $ | $\begin{bmatrix} p_{12} \\ p_{22} \end{bmatrix} = 0$ |

Solve three scalar equations for  $p_{11}$ ,  $p_{12}$ , and  $p_{22}$ 

29

## More Solutions for the Algebraic Riccati Equation

 $-\mathbf{Q} - \mathbf{F}^T \mathbf{P} - \mathbf{P} \mathbf{F} + \mathbf{P} \mathbf{G} \mathbf{R}^{-1} \mathbf{G}^T \mathbf{P} = \mathbf{0}$ 

- See OCE, Section 6.1 for
  - Kalman-Englar method
  - Kleinman' s method
  - MacFarlane-Potter method
  - Laub's method [used in MATLAB]

## Equilibrium Response to a Command Input



## Steady-State Response to Commands

 $\Delta \dot{\mathbf{x}}(t) = \mathbf{F} \Delta \mathbf{x}(t) + \mathbf{G} \Delta \mathbf{u}(t) + \mathbf{L} \Delta \mathbf{w}(t),$ 

 $\Delta \mathbf{x}(t_o) given$  $\Delta \mathbf{y}(t) = \mathbf{H}_{\mathbf{x}} \Delta \mathbf{x}(t) + \mathbf{H}_{\mathbf{u}} \Delta \mathbf{u}(t) + \mathbf{H}_{\mathbf{w}} \Delta \mathbf{w}(t)$ 

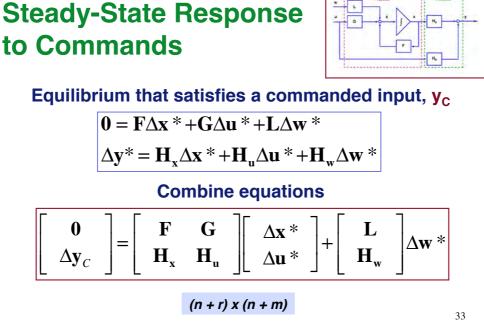
State equilibrium with constant inputs ...

 $0 = \mathbf{F}\Delta \mathbf{x}^* + \mathbf{G}\Delta \mathbf{u}^* + \mathbf{L}\Delta \mathbf{w}^*$  $\Delta \mathbf{x}^* = -\mathbf{F}^{-1} (\mathbf{G}\Delta \mathbf{u}^* + \mathbf{L}\Delta \mathbf{w}^*)$ 

... constrained by requirement to satisfy command input

 $\Delta \mathbf{y}^* = \mathbf{H}_{\mathbf{x}} \Delta \mathbf{x}^* + \mathbf{H}_{\mathbf{u}} \Delta \mathbf{u}^* + \mathbf{H}_{\mathbf{w}} \Delta \mathbf{w}^*$ 

31



Equilibrium Values of State and Control to Satisfy Commanded Input

Equilibrium that satisfies a commanded input, y<sub>c</sub>

$$\begin{bmatrix} \Delta \mathbf{x}^* \\ \Delta \mathbf{u}^* \end{bmatrix} = \begin{bmatrix} \mathbf{F} & \mathbf{G} \\ \mathbf{H}_{\mathbf{x}} & \mathbf{H}_{\mathbf{u}} \end{bmatrix}^{-1} \begin{bmatrix} -\mathbf{L}\Delta \mathbf{w}^* \\ \Delta \mathbf{y}_C - \mathbf{H}_{\mathbf{w}}\Delta \mathbf{w}^* \end{bmatrix}$$
$$\triangleq \mathbf{A}^{-1} \begin{bmatrix} -\mathbf{L}\Delta \mathbf{w}^* \\ \Delta \mathbf{y}_C - \mathbf{H}_{\mathbf{w}}\Delta \mathbf{w}^* \end{bmatrix}$$

A must be square for inverse to exist Then, number of commands = number of controls

#### **Inverse of the Matrix**

| F                     | G                         | $\stackrel{-1}{\triangleq} \mathbf{A}^{-1} = \mathbf{B} =$ | <b>B</b> <sub>11</sub> | <b>B</b> <sub>12</sub> |
|-----------------------|---------------------------|------------------------------------------------------------|------------------------|------------------------|
| <b>H</b> <sub>x</sub> | $\mathbf{H}_{\mathbf{u}}$ |                                                            | <b>B</b> <sub>21</sub> | <b>B</b> <sub>22</sub> |

| Γ |                                       | <b>B</b> <sub>11</sub> | <b>B</b> <sub>12</sub> | $\begin{bmatrix} -L\Delta w^* \end{bmatrix}$                                                      |
|---|---------------------------------------|------------------------|------------------------|---------------------------------------------------------------------------------------------------|
| L | $\Delta \mathbf{u}^* \end{bmatrix}^=$ | <b>B</b> <sub>21</sub> | <b>B</b> <sub>22</sub> | $\begin{bmatrix} \Delta \mathbf{y}_C - \mathbf{H}_{\mathbf{w}} \Delta \mathbf{w}^* \end{bmatrix}$ |

B<sub>ij</sub> have same dimensions as equivalent blocks of A Equilibrium that satisfies a commanded input, y<sub>c</sub>

$$\Delta \mathbf{x}^* = -\mathbf{B}_{11} \mathbf{L} \Delta \mathbf{w}^* + \mathbf{B}_{12} \left( \Delta \mathbf{y}_C - \mathbf{H}_{\mathbf{w}} \Delta \mathbf{w}^* \right)$$
$$\Delta \mathbf{u}^* = -\mathbf{B}_{21} \mathbf{L} \Delta \mathbf{w}^* + \mathbf{B}_{22} \left( \Delta \mathbf{y}_C - \mathbf{H}_{\mathbf{w}} \Delta \mathbf{w}^* \right)$$

35

## Elements of Matrix Inverse and Solutions for Open-Loop Equilibrium

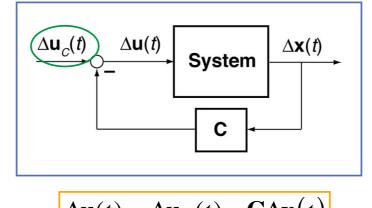
Substitution and elimination (see Supplement)

$$\begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix} = \begin{bmatrix} \mathbf{F}^{-1} (-\mathbf{G}\mathbf{B}_{21} + \mathbf{I}_n) & -\mathbf{F}^{-1}\mathbf{G}\mathbf{B}_{22} \\ -\mathbf{B}_{22}\mathbf{H}_{\mathbf{x}}\mathbf{F}^{-1} & (-\mathbf{H}_{\mathbf{x}}\mathbf{F}^{-1}\mathbf{G} + \mathbf{H}_{\mathbf{u}})^{-1} \end{bmatrix}$$

#### Solve for $B_{22}$ , then $B_{12}$ and $B_{21}$ , then $B_{12}$

$$\Delta \mathbf{x}^* = \mathbf{B}_{12} \Delta \mathbf{y}_C - (\mathbf{B}_{11}\mathbf{L} + \mathbf{B}_{12}\mathbf{H}_w) \Delta \mathbf{w}^*$$
$$\Delta \mathbf{u}^* = \mathbf{B}_{22} \Delta \mathbf{y}_C - (\mathbf{B}_{21}\mathbf{L} + \mathbf{B}_{22}\mathbf{H}_w) \Delta \mathbf{w}^*$$

## LQ Regulator with Command Input (Proportional Control Law)



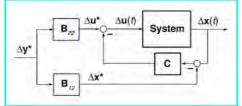
 $\Delta \mathbf{u}(t) = \Delta \mathbf{u}_{C}(t) - \mathbf{C} \Delta \mathbf{x}(t)$ 

How do we define  $\Delta u_C(t)$ ?

37

## Non-Zero Steady-State Regulation with LQ Regulator

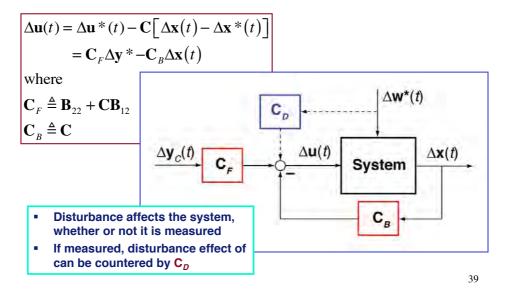
Command input provides equivalent state and control values for the LQ regulator



Control law with command input

$$\Delta \mathbf{u}(t) = \Delta \mathbf{u}^{*}(t) - \mathbf{C} [\Delta \mathbf{x}(t) - \Delta \mathbf{x}^{*}(t)]$$
  
=  $\mathbf{B}_{22}\Delta \mathbf{y}^{*} - \mathbf{C} [\Delta \mathbf{x}(t) - \mathbf{B}_{12}\Delta \mathbf{y}^{*}]$   
=  $(\mathbf{B}_{22} + \mathbf{C}\mathbf{B}_{12})\Delta \mathbf{y}^{*} - \mathbf{C}\Delta \mathbf{x}(t)$ 

## LQ Regulator with Forward Gain Matrix



## Next Time: Cost Functions and Controller Structures

# **Supplemental Material**



