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Continuous-Time, Linear,

Time-Invariant System Model
Ax(t) = FAX(1)+ GAu(r) + LAw(?),

Ax(t)) given
Ay(t)=H Ax(t)+ H, Au(r)+ H _ Aw(t)

Dynamic | Observation
Process A Process
'




Linear-Quadratic Regulator:
Finite Final Time

AuAt A
_ﬁ).o—-u(t) System Ay

L

Ax(t) = FAX(t) + GAu(t)

AT = %Ax’ (t)P(1 )AX(t,)

Au(t)z_lil_[é\f:)ﬁ?(t)]m) +;{'f[ s avo | & }[ s H

0

P(1)=—[F-GR'M" | P(+)~P(:)[F-GR'M’ ]+ P(1)GR"'G"P(r)+[MR "M’ - Q]

P(1,)=P,
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Transformation of Variables to Eliminate
Cost Function Cross Weighting

Original LTI minimization problem

minJ, = %J[M]T(I)Q]Axl (1)+2Ax," ()M, Au, (1) + Au, (1)R Au, () ] dt

subjectto  Ax,(r)=FAx, (1) +G,Au,(¢)

Can we find a transformation such that

. 1 .
min.J, = El[szT (HQ,AX, (1) + Au,” (R, Au, (1) |dt = min

subject to  Ax, (1) = F,Ax, (1) + G,Au,(t)




Artful Manipulation

Rewrite integrand of J, to eliminate cross weighting of
state and control

Ax, (1)Q,AX, (1) + 2Ax,” ()M, Au, (1) + Au, ()R, Au, (1)
= Ax," (1)(Q,~M R, "M," ) Ax, ()

+[ Au, )+ R, M A%, ()] R, [ A, () +R, ™M, Ax,(1)]

2 Ax," (1)Q,Ax, () + Aul (1)R,Au, (1)

The transformation produces the following equivalences

AX, (1) = Ax, (1) Q,=Q-MR, M/
Au,(1)=Au,()+R, "M, Ax,(t) R,=R,

(Q,R) and (Q,M,R) LQ Problems are

Equivalent
AXz(t): AXl(t):> A]'12(1‘): Alll(l‘)+R1_lMlTAxl(t)
AX, () = A%, (1) Q,=Q,-MR'M/
R, =R,

Ax, (1) =F,Ax, (1) + G,Au, (1)
A%, (1) =F,A%,(1)+G, [ Aw, (1) + R, "M, Ax, (1) |
=(F,+R,"M," ) Ax,(1) + G, Au, (1)
= A%, (1) = FAx, (1) + G, Au, (1)

G, =G, = Therefore, the 2 forms are equivalent
F,=F -G,R,"M,"| = Whatever we prove for a (Q,R) cost function
_ pertains to a (Q,M,R) cost function
=F-GR, M/
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Recall: LQ Optimal Control of an

Unstable First-Order System

f:]; g:]

Ax=Ax+Au; x(0)=1

5.
%1

8 7 8 9 10

Time

p(1)==1=2p(2)+ p* (1)
plt,)=1 i
Control gain = p(t) TZ
Au=—p(t)Ax 30‘5 :
Ae=[1-p()]Ax g:&L
7
Riccati Solution and Control Gain
for Open-Loop Stable and Unstable
1st-Order Systems
P(1,)=0

Variations in control gains are significant only in the
last 10-20% of the illustrated time interval

As time interval increases, percentage decreases




TN, P(0) Approaches Steady
—T State as t;,-> =

With M =0,

P(0)= —j{—Q—FTP(t)— P(t)F+P(1)GR™'G"P(r)} dr

fromz, t0 0
= Progression of initial Riccati = Rate of change
matrix is monotonic with approaches zero with
increasing final time increasing final time
forz, >1, dp(()) .
P,(0)>P,(0) da
9

Algebraic Riccati Equation and
Constant Control Gain Matrix

Steady-state Riccati solution
-Q-F"P(0)-P(0)F+P(0)GR'G'P(0)=0

~Q-F'P,-P,F+P,GR'G'P, =0

Steady-state control gain matrix
C,=R"'G"P(0]r, > =)=R"GP,

10



Controllability of a LTI System

Controllability: All elements of the state can be brought
from arbitrary initial conditions to zero in finite time

AX(1) = FAx(t)+ GAu(t)
Ax(0)=Ax, Ax(t,,)=0

finite

System is Completely Controllable if
Controllability Matrix =

[ G FG F'G ]has Rank »

nxnm

Controllability Examples

For non-zero coefficients

. G 0 Fe 0 1 . G= o,
U e el e, || o
2 ) 0
= Rank=2 [ G FG ]=|: \ }: Rank =2
_wn




Requirements for
Guaranteed Closed-Loop
Stability
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Optimal Cost with Feedback Control

With terminal cost =0

With u(z)=-C(r)Ax=—R"'G"P(z)Ax

JH(1, )= %f[Ax 1 (HQAX* (1) + Au*" (HRAU* (1) |dt

Substitute optimal control law in cost function

— lJf.[AX T (H)QAX * (1) + [—C(t)AX *]T (t)R[_C(t)AX *]:|dt

- j [AxH (1)QAx* (1) + Ax* (1)C” (1) RC (1) Ax* (1) ]




Optimal Cost with LQ
Feedback Control

Consolidate terms

J*(t,)= —T[Ax*T (O] Q+C7 (1)RC(r) | Ax*(z) |ar

0

DN [ =

From eq. 5.4-9, OCE, optimal cost depends only
on the initial condition

J(t,)= %AXT(O)P(O)AX(O)
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Optimal Quadratic Cost Function
is Bounded

Iy

J*(t,)= %J’[Ax ([ Q+C (1)RC(r) | Ax*(t) |ar

0

As final time goes to infinity

J#(o0) = }figolo%tf[Ax ([ Q+C7 (1)RC(1) | Ax* (1) |ar

A

| =

I[Ax *7 (t)[Q+CTRC]Ax*(t)]dt = %AXT(O)PAX(O)

Jis bounded and positive (Q>0
provided that R>0

Because Jis bounded, C is a stabilizing gain
matrix 16




Requirements for Guaranteeing

Stability of the LQ Regulator

AX(t) = FAx(t) + GAu(?) = [F — GC| Ax(¢)

Closed-loop system is stable whether or
not open-loop system is stable if ...

Q>0
R>0

... and (F,G) is a controllable pair

Rank[ G FG --- F''G }:

n

Lyapunov Stability of

the LQ Regulator

ok

Ax(t)=[F - GC]Ax(t)=| F - GR 'GP | Ax(1)

Lyapunov function
V[ Ax(7)]= Ax" (1)PAx(#) 20

Rate of change of Lyapunov function

V=Ax"(t)PAX(1)+ AX" (1) PAX(1)

— AXT (t){P[F—GR"GTP:|+[F—GR"GTP]T P}Ax(t)

17
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Lyapunov Stability of the
LQ Regulator

Algebraic Riccati equation
—-Q-F'P-PF+PGR'G'P=0

Substituting in rate equation

V=Ax (t){P[F— GR'G'P]+[F-GR'G'P] P}Ax(t)

=-Ax" (t){Q+PGR 'GP} Ax(r) < 0

Defining matrix is positive definite
Therefore, closed-loop system is stable
19

Less Restrictive
Stability Requirements

Q may be positive semi-definite if
(F,D) is an observable pair, where

Q=D’'D, where D may not be (nxn)

Observability requirement

Rank[ p’ F'D’ ... (FT)n—lDT :|: "

20



Observability Example

« |If F contains stable

x,(1) B 0 1 x,(1) B
[ £(0) ]{ -0, 2o, [ v [P0
6@ |
yo=[ 0 1 ]{ o) }Hx(r)
For non-zero coefficients
| B FE = 0 =07 1 Rank=2
1 2w,

Even Less Restrictive Stability

21

Requirements
modes, closed-loop

- S —
stability is guaranteed “fn'ii’fif?ﬁ"{ S
if ™ Dutectable
— (F,G) is a stabilizable
Qa i r Stabilizatle ;m':‘ifx':m
— (F,D) is a detectable '
pair

28
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Stability Requirements with
Cross Weighting

= |f F contains stable modes, closed-loop
stability is guaranteed if

* [(F— GR-'MT7),G] is a stabilizable pair
= [(F— GR-'MT7),D] is a detectable pair
*(Q-GR'M") =0

"R>0

23

Cost Function
AJ = l(())sz(tf)+ lim lr'jr(qsz +rAu’)dt
2 yon2?
Open-Loop System Control Law
A = fAx+ gAu Au=—-5L Ax = —cAx

r

Algebraic Riccati Equation Choose positive solution of

24



Example: LQ Optimal Control
of a First-Order LTI System

Closed-Loop System
2
sz[ —ﬁjmz(f—c)m
r

Stability requires that
(f—c)<0

If f <0, then system is stable with no control (¢ =0)

25

Example: LQ Optimal Control of
a First-Order LTI System

If f >0 (unstable), and r > 0, then ﬂz >0, and
8

fr g\
=211 1+] &
) g{*/*(ﬁ) ]

If g>0, and g #0, then and closed-loop system is, as ¢ — 0,

p— L1441 = 2L [f—ﬂ}(f—g—@}(f—zf)bf
8 8 r r-g

Stable closed - loop system is "mirror image" of unstable open - loop system

when g =0

26



Solution of the Algebraic
Riccati Equation

27

Solution Methods for the Continuous-
Time Algebraic Riccati Equation

—Q-F'P-PF+PGR'G'P=0

1) Integrate Riccati differential equation to steady
state
2) Explicit scalar equations for elements of P

a) Difficult for n> 3

b) May use symbolic math (MATLAB Symbolic Math Toolbox,
Mathematica, ...)

28



Example: Scalar Solution for

the Algebraic Riccati Equation

—Q-F'P-PF+PGR'G'P=0

Second-order example

1

q,

, 0

P
P

_ o Jo ' Pun Pa | | Pu Pn i
0 gy b T P Pxn P Px» Jo
!

-1 T
P 8 8n n 0 8 8n P
P 81 8» 0 ny 8y 8» P

o
Jo

P
Px»

|
s

Solve three scalar equations for p,,, p,., and p.,

More Solutions for the
Algebraic Riccati Equation

—Q-F'P-PF+PGR'G'P=0

= See OCE, Section 6.1 for

= Kalman-Englar method

= Kleinman’ s method

= MacFarlane-Potter method

= Laub’ s method [used in MATLAB]

29
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Equilibrium Response fo
a Command Input

AX(1) = FAx(t)+ GAu(t)+ LAw(?),
Ax(t,)) given
Ay(t)=H Ax(t)+H Au(z)+H _ Aw(?)

State equilibrium with constant inputs ...
0 = FAX *+GAu *+LAw *
Ax* = —F ' (GAu*+LAw *)

31

Steady-State Response
to Commands

... constrained by requirement to satisfy command input

Ay* = H Ax * +H_ Au * +H_Aw *

32



Steady-State Response
to Commands

Equilibrium that satisfies a commanded input, y.
0 = FAx * +GAu *+LAw *
Ay*=H Ax*+H Au*+H Aw *

Combine equations

0 _ F G AX * N L Aw *
Ay. | | HZ H, Au* H, w

(n+r)x(n+m)

33

Equilibrium Values of State and
Control to Satisfy Commanded Input

Equilibrium that satisfies a commanded input, y.
Ax* | | F G
Au* | | H, H,

A o ~LAw *
A [ Ay —H Aw * }

A must be square for inverse to exist

-1

—LAw *
Ay.—H Aw*

34



Inverse of the Matrix

-1
F G é A_] — B — Bll B12
HX Hu B21 B22

Ax* | B, B, —LAw *

Au* | | B, B, | Ay.-H,Aw*
B, have same dimensions as equivalent blocks of A

Equilibrium that satisfies a commanded input, y.

Ax*=-B, LAw *+B,, (Ay. — H, Aw *)
Au* = -B, LAw *+B,, (Ay. — H, Aw *)
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Elements of Matrix Inverse and
Solutions for Open-Loop Equilibrium

Substitution and elimination (see Supplement)

B, B, F'(-GB,, +1,) -F'GB,,
B, B, B HF' (-HF'G+H,)

Solve for B,,, then B,, and B,,, then B,,

Ax*=B,Ay.—(B,L+B,H, )Aw*
Au*=B, Ay, —(B, L+B,H_ )Aw*

36



LQ Regulator with Command Input
(Proportional Control Law)

Au(t AX(t
m L System 0 -

Au(t) = Au,.(t) — CAx(t)

How do we define Au(#)? .

Non-Zero Steady-State Regulation
with LQ Regulator

Command input provides equivalent state and
control values for the LQ regulator

@ﬂC_ el System Ax(f
Ay*

Control law with command input

Au(t) = Au*(1)— C[ Ax(t)— Ax*(¢) |
=B,,Ay*—C[ Ax(t)- B ,Ay * |
=(B,, +CB,,) Ay *—CAx(¢)

38



LQ Regulator with Forward
Gain Matrix

Au(t) = Au* (1) — C[ Ax(#)— Ax*(t)]
= C Ay *—C ,Ax(1)

where
AwW*(t
C, 2B, +CB, o L 1 L
C,2C
Ay (0 ¢ Au() AX(1
< C, T_ System 9
= Disturbance affects the system, C,
whether or not it is measured

= |f measured, disturbance effect of

can be countered by C,
39

Next Time:
Cost Functions and Controller
Structures

40
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Square-Root Solution for the
Algebraic Riccati Equation

-Q-F'P-PF+PGR'G'P=0|

where

Square root of P: [d,, 0 0
N

P2DD’; D2.P

Integrate D to steady state

D(1)=D'"M,, (), D(tf)DT (tf) = P(r

f

where
M(1) 2 M, (1) + M, (1)
= _D'(+)F'D(1)-D’ (t)F'D7 (t)= D" (1)QD ™’ (+)+ D (/)GR"'G'D " (1)

Au(r)=-R™[ G' DD |Ax(r) and

0 i<j
=-CyAx(r) (m,/)u(t)—| %m,, . i=J‘ 4




Matrix Inverse Identity
OCE, eq. 2.2-57 to -67

Bll B12 All A12 é I — In 0
B21 B22 A21 A22 . O Im

A21 A22 (B21All + B22A21) (B21A12 + B22A22)

Bll B12
B21 B22

I: A11 A12 — |: (BllAll + B12A21) (B11A12 + B12A22)

(B,A, +B,A, ) =1,
(B,A,+B,A,)=0
(B,A,, +B,A,)=0
(B,A, +B,A,))=1

m




