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Continuous-Time, Linear, 

Time-Invariant System Model �

 

��x(t) = F�x(t)+G�u(t)+L�w(t),
�x(to ) given

�y(t) = Hx�x(t)+Hu�u(t)+Hw�w(t)
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Linear-Quadratic Regulator: 

Finite Final Time�

 ��x(t) = F�x(t) +G�u(t)

 

�P t( ) = � F �GR�1MT�� ��
T
P t( )� P t( ) F �GR�1MT�� �� + P t( )GR�1GTP t( ) + MR�1MT �Q�� ��

P t f( ) = Pf

�u(t) = �R�1 MT +GTP t( )�� ���x t( )
= �C t( )�x t( )

�2J = 1
2
�xT (t f )P(t f )�x(t f )

+ 1
2

�xT (t) �uT (t)�
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Transformation of Variables to Eliminate 

Cost Function Cross Weighting�

 

min
�u2

J2 =
1
2

�x2
T (t)Q2�x2 (t)+ �u2

T (t)R 2�u2 (t)�� ��dt
0

t f

� = min
�u1

J1

subject to ��x2 (t) = F2�x2 (t)+G2�u2 (t)

 

min
�u1

J1 =
1
2

�x1
T (t)Q1�x1(t)+ 2�x1

T (t)M1�u1(t)+ �u1(t)R1�u1(t)�� ��dt
0

t f

�
subject to ��x1(t) = F1�x1(t)+G1�u1(t)

�.:�C2�H:1�.�@>.:?3;>9.@6;:�?A05�@5.@�

Original LTI minimization problem�
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Artful Manipulation�

�x1
T (t)Q1�x1(t)+ 2�x1

T (t)M1�u1(t)+ �u1(t)R1�u1(t)

= �x1
T (t) Q1 �M1R1

�1M1
T( )�x1(t)

+ �u1(t)+R1
�1M1

T�x1(t)�� ��
T
R1 �u1(t)+R1

�1M1
T�x1(t)�� ��

Rewrite integrand of J1 to eliminate cross weighting of 

state and control�

�x2 (t) = �x1(t)
�u2 (t) = �u1(t)+R1

�1M1
T�x1(t)

The transformation produces the following equivalences�
 � �x1

T (t)Q2�x1(t)+ �u2
T (t)R1�u2 (t)

Q2 =Q1 �M1R1
�1M1

T

R2 = R1

5�

(Q,R) and (Q,M,R) LQ Problems are 

Equivalent�

�� Therefore, the 2 forms are equivalent�
�� Whatever we prove for a (Q,R) cost function 

pertains to a (Q,M,R) cost function �

 

�x2 (t) = �x1(t)�
��x2 (t) = ��x1(t)

 

��x2 (t) = F2�x2 (t)+G2�u2 (t)

��x2 (t) = F2�x1(t)+G2 �u1(t)+R1
�1M1

T�x1(t)�� ��
= F2 +R1

�1M1
T( )�x1(t)+G2�u1(t)

= ��x1(t) = F1�x1(t)+G1�u1(t)

G2 =G1

F2 = F1 �G2R1
�1M1

T

= F1 �G1R1
�1M1

T

�u2 (t) = �u1(t) + R1
�1M1

T�x1(t)
Q2 = Q1 �M1R1

�1M1
T

R2 = R1

6�



 

�p t( ) = �1� 2p t( ) + p2 t( )
p t f( ) = 1

 ��x = �x + �u; x 0( ) = 1

�u = � p t( )�x

 ��x = 1� p t( )�� ���x

Recall: LQ Optimal Control of an 

Unstable First-Order System�
f = 1; g = 1

Control gain = p t( )

7�

Riccati Solution and Control Gain 

for Open-Loop Stable and Unstable 

1st-Order Systems�
P t f( ) = 0

).>6.@6;:?�6:�0;:@>;8�4.6:?�.>2�?64:6H0.:@�;:8E�6:�@52�
last 10-20% of the illustrated time interval �

As time interval increases, percentage decreases� 8�



P(0) Approaches Steady 

State as tf -> ��

With M = 0,

P 0( ) = � �Q� FTP t( )� P t( )F + P t( )GR�1GTP t( ){ }dt
t f

0

�
from t f  to 0

for t f2 > t f1
P2 0( ) � P1 0( )

dP 0( )
dt t f ��� ��� 0

�� Progression of initial Riccati 

matrix is monotonic with 

6:0>2.?6:4�H:.8�@692�

�� Rate of change 

approaches zero with 

6:0>2.?6:4�H:.8�@692�
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Algebraic Riccati Equation and 

Constant Control Gain Matrix�

Steady-state control gain matrix�

�Q � FTP 0( ) � P 0( )F + P 0( )GR�1GTP 0( ) = 0

Css = R
�1GTP 0 t f ��( ) = R�1GTPss

�Q � FTPSS � PSSF + PSSGR
�1GTPSS = 0

Steady-state Riccati solution�

10�



Controllability of a LTI System�

System is Completely Controllable if �
 

��x(t) = F�x(t)+G�u(t)
�x(0) = �x0 �x(t finite ) = 0

 

Controllability Matrix = 

G FG � Fn�1G�� ��  has Rank n

Controllability: All elements of the state can be brought 

from arbitrary initial conditions to zero in H:6@2�@692 �

n � nm
11�

Controllability Examples�

F =
0 1

�� n
2 �2�� n

�

�
�
�

�



	
	
; G =

0
� n

2

�

�
�
�

�



	
	

G FG�� �
 =
0 � n

2

� n
2 �2�� n

3

�

�
�
�

�



	
	
�   Rank = 2

F =
0 1

�� n
2 �2�� n

�

�
�
�

�



	
	
; G = � n

2

0

�

�
�
�

�



	
	

G FG�� �
 =
� n

2 0

0 �� n
4

�

�
�
�

�



	
	
�   Rank = 2

F = 0 1
0 b

�

�
�

�

�
�; G = b

0
�

�
�

�

�
�

G FG�� �� =
b 0
0 0

�

�
�

�

�
��   Rank = 1

F = 0 1
0 b

�

�
�

�

�
�; G = 0

b
�

�
�

�

�
�

G FG�� �� =
0 b
b b2

�

�
�

�

�
��   Rank = 2

�;>�:;:�F2>;�0;23H062:@?�
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Requirements for 
Guaranteed Closed-Loop 

Stability�

13�

With  u t( ) = �C t( )�x = �R�1GTP t( )�x

J * t f( ) = 1
2

�x*T (t)Q�x*(t)+ �u*T (t)R�u*(t)�� ��dt
0

t f

�

Optimal Cost with Feedback Control�

= 1
2

�x*T (t)Q�x*(t)+ �C t( )�x*�� ��
T (t)R �C t( )�x*�� ���

�
�
�dt

0

t f

�

= 1
2

�x*T (t)Q�x*(t)+ �x*T t( )CT t( )RC t( )�x* t( )�� ��dt
0

t f

�

Substitute optimal control law in cost function�

With terminal cost = 0�

14�



Optimal Cost with LQ 

Feedback Control�

J t f( ) = 12 �x
T (0)P 0( )�x(0)

From eq. 5.4-9, OCE, optimal cost depends only 

on the initial condition�

J * t f( ) = 12 �x*T (t) Q+CT t( )RC t( )�� ���x* t( )�� ��dt
0

t f

�

Consolidate terms�

15�

Optimal Quadratic Cost Function 

is Bounded�

J * t f( ) = 12 �x *T (t) Q +CT t( )RC t( )�� ���x * t( )�� ��dt
0

t f

�

Because J is bounded, C is a stabilizing gain 

matrix�

J is bounded and positive 

provided that�
Q > 0
R > 0

 

J * �( ) = lim
t f��

1
2

�x*T (t) Q+CT t( )RC t( )�� ���x* t( )�� ��dt
0

t f

�

�
1
2

�x*T (t) Q+CTRC�� ���x* t( )�� ��dt
0

�

� = 1
2
�xT (0)P�x(0)

�?�H:.8�@692�4;2?�@;�6:H:6@E�
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Requirements for Guaranteeing 

Stability of the LQ Regulator�

 ��x(t) = F�x(t) +G�u(t) = F �GC[ ]�x(t)
Closed-loop system is stable whether or 

not open-loop system is stable if ...�
Q > 0
R > 0

 
Rank G FG � Fn�1G�� �� =  n

... and (F,G) is a controllable pair�

17�

Lyapunov Stability of 

the LQ Regulator�

 ��x(t) = F �GC[ ]�x(t) = F �GR�1GTP�� ���x(t)

 

�V = �xT t( )P��x t( ) + ��xT t( )P�x t( )
= �xT t( ) P F �GR�1GTP�� �� + F �GR�1GTP�� ��

T
P{ }�x t( )

V �x t( )�� �� = �xT t( )P�x t( ) � 0
Lyapunov function�

Rate of change of Lyapunov function�

18�



Lyapunov Stability of the 

LQ Regulator�

�Q � FTP � PF + PGR�1GTP = 0
Algebraic Riccati equation�

Substituting in rate equation�

 
�V = �xT t( ) P F �GR�1GTP�� �� + F �GR�1GTP�� ��

T
P{ }�x t( )

  
= ��xT t( ) Q+ PGR�1GTP{ }�x t( )�� 00

�2H:6:4�9.@>6D�6?�<;?6@6B2�12H:6@2�
Therefore, closed-loop system is stable�

19�

Less Restrictive 

Stability Requirements�

 
Rank DT FTDT � FT( )n�1

DT�
��

�
��
=  n

Q may be '&*!+!-��*�$!���2%!+� if 

(F,D) is an observable pair, where�

 Q � D
TD,  where D may not be n � n( )
Observability requirement�

20�



Observability Example�

 

�x1(t)
�x2 (t)

�

�
�
�

�

	
�
�
=

0 1
�� n

2 �2�� n

�

�
�
�

�

	
�
�

x1(t)
x2 (t)

�

�
�
�

�

	
�
�
= Fx t( )

y(t) = 0 1�� �	
x1(t)
x2 (t)

�

�
�
�

�

	
�
�
= Hx t( )

�;>�:;:�F2>;�0;23H062:@?�

HT FTHT�� �
 =
0 �� n

2

1 �2�� n

�

�
�
�

�



	
	
�   Rank = 2
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Even Less Restrictive Stability 

Requirements�

!� If F contains stable 

modes, closed-loop 

stability is guaranteed 

if�
–� (F,G) is a stabilizable 

pair�
–� (F,D) is a detectable 

pair�

22�



Stability Requirements with 

Cross Weighting�
�� If F contains stable modes, closed-loop 

stability is guaranteed if�
�� [(F – GR-1MT),G] is a stabilizable pair�
�� [(F – GR-1MT),D] is a detectable pair�
�� (Q – GR-1MT) � 0�
��R > 0�

23�

Example: LQ Optimal Control 

of a First-Order LTI System�

�u = �
gp
r
�x = �c�x

�q � 2 fp + g
2 p2

r
= 0

p2 � 2 fr
g2

p � qr
g2

= 0

�2J =
1
2
0( )�x2 (t f ) +

t f ��
lim

1
2

q�x2 + r�u2( )dt
to

t f

�

Choose positive solution of

p = fr
g2 ±

fr
g2

�
��

�
	�

2

+ qr
g2

= fr
g2 1± 1+ g2

fr
�
��

�
	�

2

qr
�

�

�
�




�

�
�

 ��x = f�x + g�u

Cost Function�

Open-Loop System� Control Law�

Algebraic Riccati Equation�

24�



Example: LQ Optimal Control 

of a First-Order LTI System�

 
��x = f � g

2p
r

�
��

�
��
�x = f � c( )�x

Stability requires that
f � c( ) < 0

If f < 0,  then system is stable with no control c = 0( )

Closed-Loop System�

25�

Example: LQ Optimal Control of 

a First-Order LTI System�
If f > 0 (unstable),  and r > 0, then fr

g2 > 0,  and

p = fr
g2 1+ 1+ g2

fr
�
��

�
	�

2

qr
�

�

�
�




�

�
�

If q � 0,  and g � 0, then

p q�0� ��� fr
g2 1+ 1�� �� =

2 fr
g2

Stable closed - loop system is "mirror image" of unstable open - loop system
when q = 0

and closed-loop system is, as q� 0,

f � g
2p
r

�
��

�
��
= f � g

2

r
2 fr
g2

�
��

�
��
= f � 2 f( ) = � f

26�



Solution of the Algebraic 
Riccati Equation�

27�

Solution Methods for the Continuous-

Time Algebraic Riccati Equation�

�Q � FTP � PF + PGR�1GTP = 0

1)� Integrate Riccati differential equation to steady 

state�
2)� Explicit scalar equations for elements of P�

a)���63H0A8@�3;>�n > 3�
b) � May use symbolic math (MATLAB Symbolic Math Toolbox, 

Mathematica, ...)�

28�



Example: Scalar Solution for 

the Algebraic Riccati Equation�

�Q � FTP � PF + PGR�1GTP = 0

�
q11 0
0 q22

�

�
�
�

�

�
�
�
�

f11 f12
f21 f22

�

�
�
�

�

�
�
�

T
p11 p12
p12 p22

�

�
�
�

�

�
�
�
�

p11 p12
p12 p22

�

�
�
�

�

�
�
�

f11 f12
f21 f22

�

�
�
�

�

�
�
�

+
p11 p12
p12 p22

�

�
�
�

�

�
�
�

g11 g12
g21 g22

�

�
�
�

�

�
�
�

r11 0
0 r22

�

�
�
�

�

�
�
�

�1
g11 g12
g21 g22

�

�
�
�

�

�
�
�

T
p11 p12
p12 p22

�

�
�
�

�

�
�
�
= 0

Second-order example�

Solve three scalar equations for p11, p12, and p22 �
29�

More Solutions for the 

Algebraic Riccati Equation�

�Q � FTP � PF + PGR�1GTP = 0

�� See OCE, Section 6.1 for�
��Kalman-Englar method�
��Kleinman��s method�
��MacFarlane-Potter method�
�� Laub��s method [used in MATLAB]�

30�



Equilibrium Response to 
a Command Input�

31�

Steady-State Response 

to Commands�

 

��x(t) = F�x(t)+G�u(t)+L�w(t),
�x(to ) given

�y(t) = Hx�x(t)+Hu�u(t)+Hw�w(t)

State equilibrium with constant inputs ...�
0 = F�x*+G�u*+L�w*
�x*= �F�1 G�u*+L�w*( )

�y* = Hx�x *+Hu�u *+Hw�w *
... constrained by requirement to satisfy command input�

32�



Steady-State Response 

to Commands�

�=A686/>6A9�@5.@�?.@6?H2?�.�0;99.:121�6:<A@��yC�

0
�yC

�

�
�
�

�

�
�
�
=

F G
Hx Hu

�

�
�
�

�

�
�
�

�x *
�u *

�

�
�

�

�
� +

L
Hw

�

�
�
�

�

�
�
�
�w *

(n + r) x (n + m)�

Combine equations�

0 = F�x *+G�u *+L�w *
�y* = Hx�x *+Hu�u *+Hw�w *

33�

Equilibrium Values of State and 

Control to Satisfy Commanded Input�
�=A686/>6A9�@5.@�?.@6?H2?�.�0;99.:121�6:<A@��yC�

 

�x*
�u*

�

�
�

�

�
� =

F G
Hx Hu

�

�
�
�

�

�
�
�

�1
�L�w*

�yC �Hw�w*
�

�
�
�

�

�
�
�

� A�1 �L�w*
�yC �Hw�w*

�

�
�
�

�

�
�
�

A must be square for inverse to exist�
Then, number of commands = number of 

controls� 34�



Inverse of the Matrix�

Bij have same dimensions as equivalent blocks of A�
�=A686/>6A9�@5.@�?.@6?H2?�.�0;99.:121�6:<A@��yC�

 

F G
Hx Hu

�

�
�
�

�

�
�
�

�1

� A�1 = B =
B11 B12
B21 B22

�

�
�
�

�

�
�
�

�x* = �B11L�w *+B12 �yC �Hw�w *( )
�u* = �B21L�w *+B22 �yC �Hw�w *( )

�x*
�u*

�

�
�

�

�
� =

B11 B12
B21 B22

�

�
�
�

�

�
�
�

�L�w*
�yC �Hw�w*

�

�
�
�

�

�
�
�

35�

Elements of Matrix Inverse and 

Solutions for Open-Loop Equilibrium�

B11 B12
B21 B22

�

�
�
�

�

�
�
�
=

F�1 �GB21 + In( ) �F�1GB22

�B22HxF
�1 �HxF

�1G +Hu( )�1
�

�

�
�
�

�

�

�
�
�

Substitution and elimination (see Supplement)�

Solve for B22, then B12 and B21, then B12�

�x*= B12�yC � B11L+B12Hw( )�w*
�u*= B22�yC � B21L+B22Hw( )�w*

36�



LQ Regulator with Command Input �
(Proportional Control Law)�

�u(t) = �uC (t) �C�x t( )
�;C�1;�C2�12H:2��uC(t)?�

37�

Non-Zero Steady-State Regulation 

with LQ Regulator�
Command input provides equivalent state and 

control values  for the LQ regulator�

�u(t) = �u*(t)�C �x t( )� �x* t( )�� ��
= B22�y*�C �x t( )�B12�y*�� ��
= B22 +CB12( )�y*�C�x t( )

Control law with command input�

38�



LQ Regulator with Forward 

Gain Matrix�

 

�u(t) = �u * (t) �C �x t( ) � �x * t( )�� ��
= CF�y *�CB�x t( )

where
CF � B22 +CB12
CB � C

�� Disturbance affects the system, 

whether or not it is measured�
�� If measured, disturbance effect of 

can be countered by CD�
39�

Next Time:�
Cost Functions and Controller 

Structures�

40�



SSuupppplleemmeennttaall  MMaatteerriiaall  

41�

Square-Root Solution for the 

Algebraic Riccati Equation�
�Q � FTP � PF + PGR�1GTP = 0

Square root of P:�

 P � DD
T ; D � P

 
�D t( ) = DTMLT t( ), D t f( )DT t f( ) = P t f t f ��( )

 

where

D =

d11 0 � 0
d11 d11 � 0
� � � �
d11 d11 � d11

�

�

�
�
�
�
�

�

�

�
�
�
�
�

Integrate D to steady state�

 

where
M t( ) �MLT t( ) +MUT t( )

= �D�1 t( )FTD t( )�DT t( )FTD�T t( )�D�1 t( )QD�T t( ) +DT t( )GR�1GTD�T t( )
and

mij( )LT t( ) =
0
1
2
mij

mij

�

�
�
�

�
�
�

,
i < j
i = j
i > j

�u(t) = �R�1 GTDSSDSS
T�� ���x t( )

= �CSS�x t( )
42�



Matrix Inverse Identity�
OCE, eq. 2.2-57 to -67�

 

B11 B12
B21 B22

�

�
�
�

�

�
�
�

A11 A12

A21 A22

�

�
�
�

�

�
�
�
� Im+n =

In 0
0 Im

�

�
�
�

�

�
�
�

B11 B12
B21 B22

�

�
�
�

�

�
�
�

A11 A12

A21 A22

�

�
�
�

�

�
�
�
=

B11A11 + B12A21( ) B11A12 + B12A22( )
B21A11 + B22A21( ) B21A12 + B22A22( )

�

�

�
�

�

�

�
�

Solve for B22, then B12 and B21, then B12�

B11A11 + B12A21( ) = In
B11A12 + B12A22( ) = 0
B21A11 + B22A21( ) = 0
B21A12 + B22A22( ) = Im
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