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�x(t) = dx(t)

dt
= f[x(t),u(t)]

�� Dynamic Process�
�� Neglect disturbance effects, w(t)�
�� Subsume p(t) and explicit dependence on t in the 
��+��$�������f[.]�

The Dynamic Process�
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Trajectory of 
the System�

 
�x(t) = dx(t)

dt
= f[x(t),u(t)]

Integrate the dynamic equation to determine the 
trajectory from original time, t0��$��+����$�����tf�

x(t) = x(t0 ) + f[x(� ),u(� )]d�
t0

t

� ,

given u(t) for t0 � t � t f
3�

What Cost Function 
Might Be Minimized?�

�� Minimize time required to go from A to B�

J = Fuel-use Efficiency( )
0

final range

� dR = Fuel Used

J = dt
0

final time

� =  Final time

J = Cost per hour( )dt
0

final time

� =   $$

�� Minimize fuel used to go from A to B�

�� �27262C.�E7*7,2*5�,8<=�8/�9;8->,270�*�9;8->,=�

4�



Optimal System Regulation�

J =
1
T

x2 (t)( )
0

T

� dt

 
J =

1
T

xT (t)x(t)�� ��
0

T

� dt =
1
T

x1
2 + x1

2 +�+ xn
2�� ��

0

T

� dt

dim(x) = 1 x 1�

dim(x) = n x 1�

Minimize mean-square state deviations over a time interval�

Scalar variation of a single component�

Sum of variation of all state elements�

Weighted sum of state element variations�

)1B�78=�><.�27E72=.�,87=;85��

J =
1
T

xT (t)Qx(t)�� 	�
0

T

� dt =
1
T

x1 x2 x3�
�

	
�

q11 q12 q13
q21 q22 q23
q31 q32 q33

�
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0

T

� dt

n = 3�
dim(x) = n x 1�
dim(Q) = n x n�
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Tradeoffs Between State and 
Control Variations�

Trade performance, x, against control usage, u�

J = x2 (t) + ru2 (t)( )
0

T

� dt, r > 0

J = xT (t)x(t) + ruT (t)u(t)( )
0

T

� dt, r > 0

dim(u) = 1 x 1�

dim(u) = m x 1�

J = xT (t)Qx(t) + uT (t)Ru(t)( )
0

T

� dt, Q, R > 0 dim(R) = m x m�

Weight the relative importance of state and control components�

Minimize a cost function that contains state and control vectors�
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Examples�

7�

Effects of Control Weighting in 
Optimal Control of LTI System�

min
u
J = xT (t)Qx(t)+ ru2 (t)( )

0

T

� dt, Q, r > 0

Q = 1 0
0 1

�

�
�

�

�
�

r = 1 or 100
8�

dx t( )
dt

= Fx(t)+Gu(t)

F = 0 1
�a b

�

�
�

�

�
�, a,b > 0  [unstable]

G = 0
a

�

�
�

�

�
�

x =
x1, displacement

x2, rate

�

�
�
�

�

�
�
�

Example�



Effects of Control Weighting in 
Optimal Control of LTI System�

�� Optimal feedback 
control (TBD) 
stabilizes 
unstable system 
response to initial 
condition�

9�

�� Smaller control 
weight �

–� Allows larger 
control 
response�

–� Decreases state 
variation�

�� Larger control 
weight conserves 
control energy�

dx
dt

= Fx +Guoptimal

= Fx �GCx = F �GC( )x

Open- and Optimal Closed-Loop 
Response to Disturbance�

Q = 100 0
0 100

�

�
�

�

�
�

R = 1

�� Stable 2nd-order linear dynamic system: dx(t)/dt = Fx(t) + Gu(t) + Lw(t)�
�� Optimal feedback control (TBD) reduces response to disturbances�

Time Response� Phase-Plane Plot�
(Rate vs. Displacement)�

10�



Classical Cost Functions 
for Optimizing Dynamic 

Systems�

11�

The Problem of Lagrange �
(c. 1780)�

Examples of Integral Cost: the Lagrangian�

 

L x(t),u(t)[ ] = xT (t)Qx(t)+ uT (t)Ru(t)�� �� Quadratic trade between state and control
= 1 Minimum time problem
= �m(t) = fcn x t( ),u t( )�� �� Minimum fuel use problem

L x(s),u(s)[ ] =  Change in area with respect to differential length, e.g., fencing, ds [Maximize]

min
u(t )

J = L x(t),u(t)[ ]
to

t f

� dt

dim(x) = n �1
dim(f ) = n �1
dim(u) = m �1 

subject to
�x(t) = f[x(t),u(t)] , x(to ) given

12�



� x(t f )�� �� = xT (t)Px(t)
t=t f

Weighted square - error in final state

= t final � tinitial( ) Minimum time problem

= minitial �mfinal( ) Minimum fuel problem

Examples of Terminal Cost�

The Problem of Mayer �
(c. 1890)�
min
u(t )

J = � x(t f )�� ��

 

subject to
�x(t) = f[x(t),u(t)] , x(to ) given

13�

The Problem of Bolza (c. 1900) �
The Modern Optimal Control Problem*�

Combine the Problems of Lagrange and Mayer�

min
u(t )

J = � x(t f )�� �� + L x(t),u(t)[ ]
to

t f

� dt�� Minimize the sum 
of terminal and 
integral costs�

–� By choice of u(t)�
–� Subject to dynamic 

constraint�
 

subject to
�x(t) = f[x(t),u(t)] , x(to ) given
and with fixed end time, t f

14�



Augmented Cost Function�

 
JA = � x(t f )�� �� + L x(t),u(t)[ ] + ��T (t) f[x(t),u(t)]� �x(t)[ ]{ }

to

t f

� dt

Adjoin the dynamic constraint to the integrand using a Lagrange 
multiplier* to form the Augmented Cost Function, JA:�

dim �� t( )�� �� = dim f x t( ),u t( ),t�� ��{ } = n �1

15�

The Dynamic Constraint�

The constraint = 0�@1.7�=1.�-B7*62,�.:>*=287�2<�<*=2<E.-�

 dim ��T (t) f[x(t),u(t)]� �x(t)[ ]{ } = 1� n( ) n �1( ) = 1

 
f[x(t),u(t)]� �x(t)[ ] = 0 when �x(t) = f[x(t),u(t)] in t0 ,t f�� ��

* �Lagrange multiplier is also called�
–�Adjoint vector�
–�Costate vector�

16�



Necessary Conditions 
for a Minimum�

17�

Necessary Conditions 
for a Minimum�

�� Cost is insensitive to control-induced perturbations at 
=1.�E7*5�=26.�

�� Satisfy necessary conditions for stationarity along 
entire trajectory, from to to tf�

�� For integral to be minimized, integrand takes 
lowest possible value at every time�
�� Linear insensitivity to small control-induced 
perturbations�

�� Large perturbations can only increase the integral 
cost�

18�



 L x(t),u(t)[ ] + ��T (t) f[x(t),u(t)]� �x(t)[ ]{ }

�� Integrand must be linearly 
insensitive to control-induced 
perturbation�

�� Larger perturbations can only 
increase the integrand�

Integrand�

19�

The Hamiltonian�

H x(t),u(t),��(t)[ ] = L x(t),u(t)[ ] + ��T (t)f x(t),u(t)[ ]

 

L x(t),u(t)[ ] + ��T (t) f[x(t),u(t)]� �x(t)[ ]{ } =
H x(t),u(t),��(t)[ ]� ��T (t)�x(t){ }

Re-phrase the integrand by introducing the Hamiltonian�

The Hamiltonian is a function of the Lagrangian,  
adjoint vector, and system dynamics�

20�



Incorporate the Hamiltonian in 
the Cost Function�

 
J = � x(t f )�� �� + H x(t),u(t),��(t)[ ]� ��T (t)�x(t){ }

to

t f

� dt

�� The optimal cost, J*, is produced by the optimal histories 
of state, control, and Lagrange multiplier: x*(t), u*(t), and�

�� (*;2*=287<�27�=1.��*625=872*7�;.F.,=��
–�integral cost�
–�constraining effect of system dynamics�

�� Substitute the Hamiltonian in the cost function�

 
min
u(t )

J = J* = � x * (t f )�� �� + H x * (t),u * (t),�� * (t)[ ]� �� *T (t)�x * (t){ }
to

t f

� dt

�� * t( )

21�

Integration by Parts�

udv = uv � vdu��

(.,=8;�-.E72=.�27=.0;*5�

%,*5*;�27-.E72=.�27=.0;*5�

 
��T (t)�x(t)dt =

t0

t f

� ��T (t)x(t)
t0

t f � ���T (t)x(t)dt
t0

t f

�

 

u = ��T (t)
dv = �x(t)dt = dx

22�



Integrate the Cost 
Function By Parts�

 
J = � x(t f )�� �� + H x(t),u(t),��(t)[ ]� ��T (t)�x(t){ }

to

t f

� dt

Cost function can be re-written as�

 

J = � x(t f )�� �� + ��T (t0 )x(t0 ) � ��T (t f )x f (t)�� ��

+ H x(t),u(t),��(t)[ ] + ���T (t)x(t){ }
to

t f

� dt

 

u = ��T (t)
dv = �x(t)dt = dx

23�

First-Order Variations�
First variations in a quantity 
induced by control variations�

�(.) = �(.)
�u

�u + �(.)
�x

�x(�u) + �(.)
���

���(�u)

=
�(.)
�u

�u + �(.)
�x

�x(�u) + �(.)
���

0( )

(The adjoint vector is a function of time alone)�

�(.) = �(.)
�u

�u + �(.)
�x

�x(�u)

24�



Stationarity of the 
Cost Function�

Three, independent, necessary conditions for 
stationarity (Euler-Lagrange equations)�

Cost  must be insensitive to small variations in 
control policy along the optimal trajectory�

 

�J*= ��
� x

� ��T�

	

�
��

�
�


�
�
�
�x(�u)

t=t f

+ ��T�x(�u)�
 �� t=to
+ �H

�u
�u+ �H

�x
+ ���T�


	
�
��
�x(�u)�

�


�
�
�to

t f

� dt = 0

� �J(t f )+ �J(t0 )+ �J(t0 � t f )

First variation of the cost function due to control�

�J* = 0

25�

First-Order Insensitivity 
to Control Perturbations�

1) ��
�x

� ��T�
��

�

	 t= t f

= 0

 

�x 0( ) = f x 0( ),u 0( )�� ��  need not be zero, but

x 0( )  cannot change instantaneously unless control is infinite

� �x �u( )�� �� t=t0 � 0,  so �J t=0 = 0

 
2) �H

�x
+ ���T�

��
�
��
= 0 in t0 ,t f( )

Individual terms of  �J *  must remain zero for arbitrary variations in �u t( )

3) �H
�u

= 0 in t0 ,t f( )
26�



Euler-Lagrange 
Equations�

27�

Euler-Lagrange Equations�

1)) ��(t f ) =
��[x(t f )]

�x
�
�
�

�
�
	

T

 

Jacobian matrices

F(t) � �f
�x

t( )

G(t) � �f
�u

t( )
 

2)) ���(t) = �
�H[x(t),u(t),��(t),t]

�x
�
�
	


�
�

T

= �
�L
�x

+ ��T t( ) �f
�x

�
��



��

T

= � Lx (t) + ��T t( )F(t)�� 
�
T

3) �H[x(t),u(t),��(t),t]
�u

=
�L
�u

+ ��T t( ) �f
�u

�
��

�
��
= Lu(t) + ��T t( )G(t)�� �� = 0

Ordinary differential equation for adjoint vector�

Boundary condition for adjoint vector�

Optimality condition�

28�



Jacobian Matrices�

29�

Jacobian Matrices Express the Solution 
Sensitivity to Small Perturbations�

Sensitivity to state perturbations: stability matrix�

F(t) = �f
�x x=xN (t )

u=uN (t )
w=wN (t )

=

� f1
�x1

� f1
�x2

... � f1
�xn

� f2
�x1

� f2
�x2

... � f2
�xn

... ... ... ...
� fn

�x1
� fn

�x2
... � fn

�xn

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�x=xN (t )
u=uN (t )
w=wN (t )

Nominal (reference) dynamic equation�

 
�xN (t) =

dxN (t)
dt

= f[xN (t),uN (t)]

30�



Sensitivity to Small Control 
Perturbations�

Control-effect matrix�

G(t) = �f
�u x=xN (t )

u=uN (t )
w=wN (t )

=

� f1
�u1

� f1
�u2

... � f1
�um

� f2
�u1

� f2
�u2

... � f2
�um

... ... ... ...
� fn

�u1
� fn

�u2
... � fn

�um

�

�

�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�x=xN (t )
u=uN (t )
w=wN (t )

31�

Jacobian Matrix Example�

F t( ) =
0 1 0

�2a1 x3N t( ) � x1N t( )�� �� �a2 a2 + 2a1 x3N t( ) � x1N t( )�� ��

c1 + b3u1N t( )�� �� c1 3c2x3N
2 t( )

�

�

�
�
�
�

�

�

�
�
�
�

Jacobian matrices are time-varying�

Original nonlinear equation describes nominal dynamics�

G t( ) =
0 0
b1 b2

b3x1N t( ) 0

�

�

�
�
�

�

�

�
�
�

 

�xN t( ) =
�x1N t( )
�x2N t( )
�x3N t( )

�

�

�
�
�
�

�

�

�
�
�
�

=

x2N t( )
a2 x3N t( )� x2N t( )�� �� + a1 x3N t( )� x1N t( )�� ��

2
+ b1u1N t( )

c2x3N t( )3 + c1 x1N t( ) + x2N t( )�� �� + b3x1N t( )u1N t( )
+ b2u2N t( )

�

�

�
�
�
�
�

�

�

�
�
�
�
�

32�



Dynamic Optimization is 
a Two-Point Boundary 
Value Problem�

Boundary condition for the state equation�2<�<9.,2E.-�*=�t0�

 �x(t) = f[x(t),u(t)] , x(to ) given

Boundary condition for the adjoint equation 2<�<9.,2E.-�*= tf�

 

���(t) = �
�L
�x

t( ) + ��T t( ) �f
�x

t( )�
��

�
�

T

, ��(t f ) =
��[x(t f )]

�x
�
	



�
�
�

T

33�

Sample Two-Point Boundary Value Problem�
Move Cart 100 Meters in 10 Seconds�

 

�x1
�x2

�

�
�
�

�

�
�
�
=

x2
u

�

�
�
�

�

�
�
�
; L = ru2; � = q x1 f �100( )2

�� Cost function: tradeoff between�
–� Terminal error squared�
–� Integral cost of control squared�

x1
x2

�

�
�
�

�

�
�
�
= Position

Velocity
�

�
�
�

�

�
�
�

H x,u,��[ ] = L x,u[ ] + ��T f x,u[ ]

= ru2 + �1 �2�
�

�
�

x2 (t)
u(t)

�

�
�
�

�

�
�
�

J = q x1 f �100( )2 + ru2 dt
to

t f

�

34�



Solution for 
Adjoint Vector�

 

���(t) = � �H
�x

�
�


�
�
�

T

= � � L
�x

+ ��T � f
�x

�

	

�
��

T

= � 0 + �1 �2( ) 0 1
0 0

�
��

�
��

�



	

�

�
�

T

��(t f ) =
��[x(t f )]

�x
�
�


�
�
�

T

= 2q x1 f �100( ) 0�

	

�
��

T

�1(t)
�2 (t)

�

�
�
�

�

�
�
�
=

�1(t f )

�1(t f ) t f � t( )
�

�

�
�

�

�

�
�
=

2q x1 f �100( )
2q x1 f �100( ) t f � t( )

�

�

�
�
�

�

�

�
�
�

 

��1
��2

�

�

�
�

�

�

�
�
= �

0
�1

�

�
�
�

�

�
�
�
;

�1
�2

�

�
�
�

�

�
�
�
t= t f

= 2q x1 f �100( )
0

�

�

�
�

�

�

�
�
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Solution for 
Control History�

�H
�u

�
��

	
�

T

=
�L
�u

�
��

	
�

T

+
�f
�u

�
��

	
�

T

�� t( )�

�
�
�

�

�


= 0

2ru(t) + 0 1( )
2q x1 f �100( )

2q x1 f �100( ) t f � t( )

�

�

�
�
�

�

�

�
�
�
= 0

Optimality condition�

Optimal control strategy�

 
u(t) = �

q
r
x1 f �100( ) t f � t( ) � k1 + k2t

36�



Cost Weighting Effects on 
Optimal Solution�

 
u(t) = �

q
r
x1 f �100( ) t f � t( ) � k1 + k2tx(t) = x(to ) + f[x(t),u(t)]dt, to � t f

to

t

�

x1(t)
x2 (t)

�

�
�
�

�

�
�
�
=

k1t
2 2 + k2t

3 6

k1t + k2t
2 2

�

�
�
�

�

�
�
�

For t = 10s, x!f
=

100

1+ 0.003 r
q

37�

Typical Iteration to Find 
Optimal Trajectory�

Calculate x(t) using prior estimate of u(t) , 
i.e., starting guess�

x(t) = x(to ) + f[x(t),u(t)]dt, to � t f
to

t

�

��(t) = ��(t f ) �
�L
�x

t( ) + ��T t( ) �f
�x

t( )�
��

	
�


T

dt
t f

t

� , t f � to

Calculate adjoint vector using prior estimate of x(t) and u(t)�

38�



Typical Iteration to Find 
Optimal Trajectory�

Calculate H(t) and �H/�u using prior estimates 
of state, control, and adjoint vector�

H x(t),u(t),��(t)[ ] = L x(t),u(t)[ ] + ��T (t)f x(t),u(t)[ ]
�H
�u

=
�L
�u

+ ��T t( ) �f
�u

�
��

�
	�
, to � t f

Estimate new u(t)�

unew (t) = uold (t) + �u �H (t)
�u

�
��

�
	�
, to � t f

39�

Alternative Necessary 
Condition for Time-
Invariant Problem�

40�



Time-Invariant Optimization Problem�
Time-invariant problem: Neither L nor 

f is explicitly dependent on time�

H x(t),u(t),��(t),t[ ] = L x(t),u(t)[ ] + ��T (t)f x(t),u(t)[ ]
= H x(t),u(t),��(t)[ ]

 �x(t) = f[x(t),u(t),p(t),t] = f[x(t),u(t),p]

L x(t),u(t),t[ ] = L x(t),u(t)[ ]
Then, the Hamiltonian is�

41�

Time-Rate-of-Change of the 
Hamiltonian for Time-Invariant System�

dH[x(t),u(t),��(t)]
dt

=
�H
�t

+
�H
�x

�x
�t

+
�H
�u

�u
�t

+
�H
���

���
�t

 

dH
dt

= Lx (t) + ��T t( )F(t)�� �� �x + Lu(t) + ��T t( )G(t)�� �� �u + f
T ���

 

dH
dt

= Lx (t) + ��T t( )F(t)( ) + ������� �� �x + Lu(t) + ��T t( )G(t)�� �� �u

= 0[ ] �x + 0[ ] �u = 0 on optimal trajectory

from Euler-Lagrange Equations #2 and #3�
42�



Hamiltonian is Constant on the 
Optimal Trajectory�

dH
dt

= 0 � H* =  constant on optimal trajectory

For time-invariant system dynamics and Lagrangian�

H* = constant is an alternative scalar 
necessary condition for optimality�

43�

Open-End-Time 
Optimization Problem�

44�



Open End-Time Problem�
Final time, tf, is free to vary�

 
J = � x(t f )�� �� + H x(t),u(t),��(t)[ ]� ��T (t)�x(t){ }

to

t f

� dt

tf is an additional control variable for minimizing J�
�J = �J(t f ) + �J(t0 ) + �J(t0 � t f )

�J(t f ) = �J(t f ) fixed t f +
dJ
dt t= t f

�t f

Goal: tf�/8;�@12,1�<.7<2=2?2=B�=8�9.;=>;+*=287�27�E7*5�=26.�2<�C.;8�

Final Time�

Cost�

45�

Additional Necessary 
Condition for Open 
End-Time Problem�
�8<=�<.7<2=2?2=B�=8�E7*5�=26.�<18>5-�+.�C.;8�

�� *
�t

= �H *  at t = t f   for open end time

Final Time�

Cost�

Additional necessary condition for stationarity�
 

dJ
dt t=t f

= ��
� t

+ ��
�x
�x�

��
�
�
+ H � ��T �x�� �

�
	



�
�
� t=t f

= ��
� t

+ ��T �x�
��

�
�
+ H � ��T �x�� �

�
	



�
�
� t=t f

= ��
� t

+ H�
�
�

�
�
� t=t f

= 0

46�



H* = 0 with Open End-Time�
If terminal cost is independent of time, and 

E7*5�=26.�2<�89.7�
dJ
dt t= t f

=
��
�t

+ H�
�
�

�
�
� t= t f

= 0( ) + H{ }
t= t f

= 0

�H * t= t f
= 0
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H* = 0 with Open End-Time and 
Time-Invariant System�

�H * t= t f
= 0

If terminal and integral costs are independent of 
=26.��*7-�E7*5�=26.�2<�89.7�

H* = 0 in t0 � t � t f

dH
dt

= 0 � H* =  constant on optimal trajectory
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Examples of  Open 
End-Time Problems�

�� Minimize elapsed time to achieve an 
objective�

�� Minimize fuel to go from one place to 
another�

�� �,12.?.�E7*5�8+3.,=2?.�><270�*�EA.-�
amount of energy�
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�*�/� �#)��$#� ) $#(�
for a Minimum�
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%>/E,2.7=��87-2=287<�/8;�
a Minimum�

�� �>5.;��*0;*70.�.:>*=287<�*;.�<*=2<E.-�
(necessary conditions for stationarity), 
plus proof of�
–� Convexity�
–� Controllability <--> Normality�
–� Uniqueness�

�� Singular optimal control�
�� Higher-order conditions�

51�

��Strengthened�� condition�
� 2H x*,u*,�� *( )

�u2 > 0 in t0 ,t f( ) �,0'1'3#�"#9+'1#�(m x m) 
Hessian matrix 

throughout trajectory�

��Weakened�� condition�
� 2H x*,u*,�� *( )

�u2 � 0 in t0 ,t f( )
Hessian may 
equal zero at 

isolated points�

Convexity �
Legendre-Clebsch Condition�

52�



Normality and �
Controllability�

�� Normality: Existence of 
neighboring-optimal solutions�
–� Neighboring vs. neighboring-

optimal trajectories�
�� Controllability: Ability to satisfy 

a terminal equality constraint�
�� Legendre-Clebsch condition 
<*=2<E.-�

53�

Neighboring vs. Neighboring-
Optimal Trajectories�

�� Nominal (or reference) trajectory and control history�

xN (t), uN (t){ } for t in [to,t f ]

�� Trajectory perturbed by�
–� Small initial condition variation�
–� Small control variation�

x(t), u(t){ } for t in [to,t f ]

= xN (t)+ �x(t), uN (t)+ �u(t){ }
�� This a neighboring trajectory�
�� … but it is not necessarily optimal �
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Both Paths Satisfy the 
Dynamic Equations�

Alternative notation�
 

�xN (t) = f[xN (t),uN (t)], xN to( )   given

�x(t) = f[x(t),u(t)], x to( )   given

 

�xN (t) = f[xN (t),uN (t)]
�x(t) = �xN (t)+ ��x(t) = f[xN (t)+ �x(t),uN (t)+ �u(t)]

 

�x(to ) = x(to )� xN (to )
�x(t) = x(t)� xN (t)
��x(t) = �x(t)� �xN (t)

�u(t) = u(t) � uN (t)

55�

Neighboring-Optimal 
Trajectories�

xN*(t) is an optimal solution to a cost function�

 

�xN * (t) = f[xN * (t),uN * (t)], xN to( )   given

JN* = � xN * (t f )�� �� + L xN * (t),uN * (t)[ ]
to

t f

� dt

 

�x * (t) = f[x * (t),u * (t)], x to( )   given

J* = � x * (t f )�� �� + L x * (t),u * (t)[ ]
to

t f

� dt

If x*(t) is an optimal solution to the same cost function�

Then xN and x are neighboring-optimal trajectories �
56�



Uniqueness �
Jacobi Condition�

�� Finite state perturbation implies 
E72=.�,87=;85�9.;=>;+*=287�

�� No conjugate points�
�� Example: Minimum distance from 

the north pole to the equator�

Conjugate 
Point at 
North Pole�

�x(t) < �{ }� �u(t) < �{ }

http://www.encyclopediaofmath.org/index.php/Jacobi_condition�

http://en.wikipedia.org/wiki/Conjugate_points�
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Next Time:�
Principles for Optimal Control, 

Part 2�
�

Reading:�
OCE: pp. 222-231�

58�



�

����	�������������

59�

Time-Invariant Example with Scalar Control�
Cart on a Track�

H x,u,��[ ] = ru(t)2 + 2q x1 f �100( ) 2q x1 f �100( ) t f � t( )�
��

�
��

x2 (t)
u(t)

�

�
�
�

�

�
�
�

ru(t)2 + 2q x1 f
�100( ) t f � t( )u(t) + 2q x1 f

�100( )x2 (t) =  Constant TBD( )

H x,u,��[ ] = L x,u[ ]+ ��T f x,u[ ] =  Constant

= ru(t)2 + �1(t) �2 (t)�
�

�
�

x2 (t)
u(t)

�

�
�
�

�

�
�
�

= ru(t)2 + �1(t)x2 (t)+ �1(t) t f � t( )u(t) =  Constant
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Cart on a Track with Scalar Control 
and Open End Time�

H* = ru(t)2 + �1(t)x2 (t) + �1(t) t f � t( )u(t) = 0

�� Fixed end-time 
results (tf = 10 s)�

�� Open end-time 
would be 
important only if 
q/r is small�
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