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The Minimum Principle



The Minimum Principle* ||

Variational necessary and sufficient conditions
imply that minimum H is optimal

JH[x(1),u(t),A(2),t]
Jdu

=0 in (to,tf)

I*H[x(1),u(t),M1),t] S
ou’

H*=H[x*(@),u*(t),A* ()] < H[x*(t),u(t),A* ()]

0in (1,.t,)

* After the “Maximum Principle” of Pontryagin, et al,
1950s (opposite convention for sign of Hamiltonian)

w4 Control Perturbation

"~ | Can Only Increase Cost

e ———
——

Effect of control perturbation on optimal Hand J *

J[ws @)+ aun)] - I [ux )] =9 x* (1)) |- o[ x*(t)) ]

+[({H[x* @%@+ M)A (0] - A#" @x* (O}~ {H [x* @) u* @) A% (0] - A#" (%% (1)}t

1,

Control perturbation has no effect on terminal cost or A" 8% ;

J[u*(t)+ Au@)]-J[u*(@)]=

[{H[x* @0 @)+ ) Ax O]} - {H[x* ()0 @) * (0]} )de =0

t(]

Assuming that x*(7) and A *(7) are the optimal values




Application of the Minimum Principle
with Bounded Control

4

+ Minimum principle applies H
— when control is limited such
that oH/Ou = 0
— in some cases of singular

control, e.g. “bang-bang
control” (TBD)

H*

Dynamic Programming



Cost Function vs.
Value Function

Optimal Cost Function (i.e.,
accrued cost) at t,

Cost Function vs.
Value Function

Optimal Value Function (i.e.,
remaining cost) at £,

Time tl
J* ()= _[L[X(T),u(r)] dt
lo
Optimal Cost Function at t,
% (tf) - ¢[X(’f)] + _[L[X(T),u(r)] dt2J*

VE(x.n) =[x (,) ]+ jL[x *(7),u*(1)] dt

= min ¢[x*(tf)]—]L[x*(r),u(r)] dr} Vs

=o[x*)]- [LIx* @10+ @] ar v

I

Optimal Value Function at 1,

A

V*

:J*

max

VE(x,.t,)= q)[x * (tf)]— jL[x *(1),u*(1)] dt

max

Value =
“Cost-to-Go”

}
wlxteg) t7)
:

r, i

Time

Q
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Time Derivative of the
Value Function

Optimal Value Function at t,

V*(x

n)=o[x*(t,)]- jL[x*(r),u*(r)] dt

By

Dynamic Prog

Hamilton-Jacobi-Bellman

Equation

» Total time-derivative of V*

— Rate at which Value is spent
— Integrand of Value function

dav*
dt

(3

= _L[X*(tl)’U*(tl)]

ah\)

=0on optlmal trajectory

oV *
ot

aV*
ox
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ramming:

Rearrange to solve for partial derivative wrt t

oV *
ot

dt

dv* oV *
ox

(—L[X*,u*]—%f[x*,u*])

J

=1,

=1

Define a Ha

miltonian for the system

oV *
ot

=t

A .
:—mlnH{ *
u

A_H{

)

), u(t) (t )} in[l‘o,tf]
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Principle of Optimality
(Bellman, 1957)

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.

HJB equation is a partial differential equation

aV * o x
EY (), u*(t, ) (t ) ’ Boundary condition ‘

é_m“inH{ *(t)u(t) (z)} in1,.,] V*[X*(ff)]=¢[X*(tf)]

Necessary and Sufficient
Condition for Optimality

oV *
ot

u(z)

:—minH{ *(t), ll(t) (f )}

t:tl

Minimum of H w.r.t. u(f) requires
stationarity and convexity
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V*[x(1?),t] is a Hypersurface That
Defines Minimum Cost Control

« V¥[x(#),t] is the integral of the HUB equation at the terminal time
— V*is a scalar function of the state ve[x*,)]= ¢[X*(tf)]|

* Ideally, the time-varying

hypersurface of V* is bowl-shaped

* Minimum of hypersurface
specifies optimal control policy Efj
TimA‘

u*(t)=u*{V*[x*(t)]}

Space Shuttle
Reentry Example
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Optimal Guidance for Space
Shuttle Reentry

— - |
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Optimal Trajectories for
Space Shuttle Reentry

Range vs. Cross-Range

(“footprint”)
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Numerical solutions using steepest-descent and conjugate-gradient algorithms
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ANGLE OF ATTACK, deg

deg

ROLL ANGLE |

Angle of Attack vs. Specific Energy
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Optimal Guidance System Derived
from Optimal Trajectories
Angle of Attack and Roll Diagram of Energy-Guidance Law
Angle vs. Specific Energy
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Guidance Functions for
Space Shuttle Reentry

Angle of Attack Guidance Roll Angle Guidance
Function Function

ANGLE OF ATTACK, deg

°
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ROLL ANGLE, deg
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-
v 040
T e

+ Guidance surfaces can be implemented with

— Table lookup
— Computational neural networks

Relationship of HUB Equation to
Other Principles of Optimality

aV *
ot

{ *(t)u*(t) (t )}

=t,

=—m1nH{x*(t )u(t ) (t )} in [ta,tf]

Calculus of Variations
(Euler-Lagrange Equations)

av*

(t) A (@)

Minimum Principle

mmH {x *(t),u(t, ) (t )} in [tg,tf] defines optimality
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Terminal State
Equality Constraint

21

Minimize a Cost Function Subject to
a Terminal State Equality Constraint

minJ = 9[x(7,) +jL x(1),u(t)] dt

= subject to Dynamic Constraint

x(t) = f[x(t),u(®)], x(¢,) given

Terminal State Equality Constraint

v [x(tf)] = (0 (scalar)
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Terminal State Equality Constraints

Soft Constraint

min(p[x(tf)]

u(t)
o[ x(t,)]=0 is OK

Hard Constraint

y[x(t,)]=0

Examples

!//[x(tf):lz X, —Xp = 0

o

l//l:x(tf)] = ‘xlf - Xp

=0

P

1x,(t) - x,
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Cost Function Augmented by
Terminal State Equality Constraint

J

Constrained ~—

=J

=7, +ul,

Unconstrained + ,LLI// I:X(t f ):I

U = constant scalar Lagrange multiplier for terminal constraint

= Separate solution into two parts
= Optimize original cost function alone

= Optimize for constraint alone

24




Euler-Lagrange Equations and 1st
Variation for Unconstrained
Optimization

00

 [IH [x,u.0] T_{a_L T&f} ~ ,
Ao = { ox }_ ox th ox [LX+F }hO]

Assuming that these equations are satisfied, the first variation is

j( 0Au)d=JL+7LT ) Au dr
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Terminal Constraint “Cost”
Augmented by Dynamic Constraint

=y [xt) ]+ [{A O[fxO00]-%(0)]} di

= lI/[X(tf)] + tf{?\.le[x,u] - 7L1TX} dt

e lp[x(tf)]+j:{Hl[X,u,KIT]—KlTX} dt

=y [x(t,) ] +[ A ()x(t) - A (e)x(t,) ]

H, £\ f[xu] +j{ [x.u, ]+, xar

| 26




Euler-Lagrange Equations and 1st
Variation for Terminal Constraint
“Cost” Stationarity

owlx )"
7"10/‘) Z{ W[ax)ﬁ f)]}

. JH [x,u,\ ,t] , of
Gl s o 1 o U

Assuming that these equations are satisfied, the first variation is

AJ, = j( 1Aujdr—1(xTGAu)dt
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First Variation of the
Constrained Cost

AJCZAJO'*‘.UAJl

=0 for constrained stationarity

AJ, = j( HOAu)dt AJ, = j(aH )dt

AJ.=AJ, + UM,

_J(aH )Au dt:}{[(Lu+th)+u7LlTG:|Au dt

lﬂ

28



First Variation of the
Constrained Cost

Al.=AJ,+uAJ, =0

- tj(&;o +“%)Au d = ][(L“ +AG)+ tA] G |Au dr

Control perturbation is arbitrary, so chose

0H, ! T )
Au=¢ 5 = 8(7\1 G) , &= arbitrary constant
u

First Variation of the
Constrained Cost

AJ, = ]:[(Lu +A)G)+ A/ G |eGT, di

= e}[(Lu +MG)G"A, + A GG A, |t

tl)

= g{f[(Lu +1,G)G"A, ] dr + uf[MGGTxl]dt} 2 e(a+ub)

1,

|Solution for terminal constraint Lagrange multiplier|

AJ,.=0 if u=—%

29
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Controllability Gramian

For control of the terminal constraint, the
controllability gramian must not equal zero

b2 j[x{GGTxlj dt # 0

A sufficient condition for optimality

31

Optimizing Control for
Terminal Constraint

Choose u(?) such that
JH,. 8H0_(g)8H1
du | du \b)ou

:{(Lu +ng)-(%)7¢(}}:0
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Linear, Time-Invariant
Minimum-Time Problem

33

Linear, Time-Invariant Minimum-
Time Problem

Linear, time-invariant system, scalar control

dax(t)
dt

=Fx()+Gu(t), x(0)=x,

Control constraint

c(u)=|u|—1£0

Cost function Terminal constraint

J=tj:a’t v[x(r,)]=0
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Linear, Time-Invariant Minimum-
Time Problem

Hamiltonian

H.=1+A" (Fx+Gu)+uy

Adjoint equation

o %) - ()[40

X

Open-end time problem Time-invariant problem

H * (tf) =0 H_ *(¢)=0 on entire trajectory
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Linear, Time-Invariant
Minimum-Time Problem

Optimality conditions not satisfied

oH . o0°H
—<£=A"G, . =
ou ou’

Minimum principle (smallest Hamiltonian) solves the problem

=0 = Singular problem (not convex)

1+A*" (Fx*+Gu*) <1+ A*" (Fx*+Gu)
or

A (Gu *) <A (Gu), most negative value

Optimal control is a . +1, A* G<0
. . u* =
switching law 1 A% G>0 y




“Bang-Bang” Control of
the Lunar Module

Second-order system with ON/OFF reaction control

66 | [ o 1 | 61 0
[ q(1) }{ 0 0 }[ q(1) }{ 8.l 1, }‘(I)

Time evolution of the state while a thruster is on [u(t) = 1]
Angular rate, deg/s: q(t) = (gA / Iyy)t +q(0)

Angle, deg: 0(1)=(g, /1) 12+ q(0) +6(0)

Neglecting initial conditions, what does the phase-plane
plot (pitch rate vs. pitch angle) look like?
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Apollo Lunar Module Control

16 reaction control thrusters
— Control about 3 axes
— Redundancy of thrusters

LM Digital Autopilot

INERTIAL
MEASUREMENT
UNIT

™ OR
13 ED * XI5
o e
e &
15 s 1ONAL
i
+2 Ax1S
oR | -
TR AXIS
(ol ads) DC
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Constant-Thrust
(Acceleration) Trajectories

Foru=1, Foru=-1,
Acceleration = g/, Acceleration =-g,/l,,
Thrusting away from the Thrusting to the
origin origin
> Positive Thrust g Negative Thrust
to Origin
Angular i

Positive Thrust

Negative Thrust to Origin

Angular Angular
Atttude Atttude

With zero thrust, what does the phase-plane plot look like? 39

Switching-Curve Control
Law for On-Off Thrusters

Negative Thrust
Switching Curve

Origin (i.e., zero rate
and attitude error)

\ngm@ can be reached

from any point in

\ R%? \ the state space
/ /

+ Control logic:
— Thrust in one
direction until
switching curve is

Angular
Rate

-
/ reached
= ] — Then reverse
rd Positive Thrust thl"l:ISt
Switching Curve — Switch thrust off
% -0 ~a0 20 =T [ 10 2 2 40 50 when errors are
Angular zero

Attitude

40



Next Time:
Constraints and
Numerical Optimization

Reading
OCE: Section 3.5, 3.6

41
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Coast zones conserve RCS propellant by limiting angular rate
With no coast zone, thrusters would chatter on and off at

Apollo Lunar Module

Phase-Plane Control Logic

%.,%‘“

COAST ZONE

JETS ON(-)

TARGET DEAD BAND
. 2 7

%‘4‘>

—
COAST ZONE

origin, wasting propellant
State limit cycles about target attitude
Switching curve shapes modified to provide robustness
against modeling errors
— RCS thrust level
— Moment of inertia

Apollo Lunar Module
Phase-Plane Control Law

Oc(t)

Desired
Angle

Phase-Plane
Switching Logic u(t)

Actuator

Spacecraft

43

Angular Rate

q(t)

Angle

+ Switching logic implemented in the Apollo Guidance &
Control Computer

More efficient than a linear control law for on-off actuators

44
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Typical Phase-Plane
Trajectory

Angular Rate
Error_

JETS ON(-)
COAST ZONE
TARGET DEAD BAND

Angular Attitude
Errar

JETS ON(+) COAST ZONE

With angle error, RCS turned on until reaching OFF
switching curve

Phase point drifts until reaching ON switching curve
RCS turned off when rate is 0-

Limit cycle maintained with minimum-impulse RCS firings
— Amplitude = +1 deg (coarse), +0.1 deg (fine)
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