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The Minimum Principle�
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The Minimum Principle*�

�H[x(t),u(t),��(t),t]
�u

= 0 in t0 ,t f( )

� 2H[x(t),u(t),��(t),t]
�u2 > 0 in t0 ,t f( )

H* = H x * (t),u * (t),�� �� (t)[ ] � H x * (t),u(t),�� �� (t)[ ]

Variational�:1/1??->E�-:0�?A2H/51:@�/;:05@5;:?�
imply that minimum H is optimal�

* After the �Maximum Principle� of Pontryagin, et al, 
1950s (opposite convention for sign of Hamiltonian)�
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Control Perturbation 
Can Only Increase Cost�

 

J u*(t)+ �u(t)[ ]� J u*(t)[ ] = � x*(t f )�� 	
 �� x*(t f )�� 	


+ H x*(t),u*(t)+ �u(t),�� �� (t)[ ]� �� ��T (t)�x*(t){ }� H x*(t),u*(t),�� �� (t)[ ]� �� ��T (t)�x*(t){ }
to

t f

� dt

J u*(t)+ �u(t)[ ]� J u*(t)[ ] =

H x*(t),u*(t)+ �u(t),�� �� (t)[ ]{ }� H x*(t),u*(t),�� �� (t)[ ]{ }
to

t f

� dt � 0

Effect of control perturbation on optimal H and J *�

Control perturbation has no effect on terminal cost or ��T �x
�t

Assuming that x* t( )   and �� * t( )  are the optimal values 4�



Application of the Minimum Principle 
with Bounded Control�

�� Minimum principle applies �
–� when control is limited such 

that �H/�u � 0�
–� in some cases of singular 

control, e.g. ��bang-bang 
control����(TBD)�
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Dynamic Programming�
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Cost Function vs. 
Value Function�

J * t1( ) = L x(� ),u(� )[ ]
to

t1

� d�

Optimal Cost Function (i.e., 
accrued cost) at t1�

 
J * t f( ) = � x(t f )�� �� + L x(� ),u(� )[ ]

to

t f

� d� � J *max

Optimal Cost Function at tf�

Cost�
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Cost Function vs. 
Value Function�
Optimal Value Function (i.e., 

remaining cost) at t1�

V * x1,t1( ) = � x * (t f )�� �� + L x * (� ),u * (� )[ ]
t1

t f


 d�

= � x * (t f )�� �� � L x * (� ),u * (� )[ ]
t f

t1


 d�

= min
u

� x * (t f )�� �� � L x * (� ),u(� )[ ]
t f

t1


 d�
�
�
	

�	



�
	

�	

Optimal Value Function at to�

 

V * xo,to( ) = � x * (t f )�� �� � L x * (� ),u * (� )[ ]
t f

t0

� d�

� V *max = J *max

Value = �
��Cost-to-Go���
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Time Derivative of the 
Value Function�

V * x1,t1( ) = � x * (t f )�� �� � L x * (� ),u * (� )[ ]
t f

t1

� d�

��Total time-derivative of V*�
–� Rate at which Value is spent�
–� Integrand of Value function�

 

dV *
dt t=t1

= �L x*(t1),u*(t1)[ ]

= �V *
�t

+ �V *
�x
�x + �V *

�u
�u�

��
�
��
t=t1

= 0 on optimal trajectory�

Optimal Value Function at t1�
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Dynamic Programming: �
Hamilton-Jacobi-Bellman 
Equation�

Rearrange to solve for partial derivative wrt t�

 

�V *
�t t=t1

= dV *
dt

� �V *
�x
�x�

��
�
��
t=t1

= �L x*,u*[ ]� �V *
�x
�x�

��
�
��
t=t1

= �L x*,u*[ ]� �V *
�x

f x*,u*[ ]�
��

�
��
t=t1

 

�V *
�t t=t1

� �H x*(t1),u*(t1),
�V *
�x

(t1)
�
�
�



�
�

� �min
u
H x*(t1),u(t1),

�V *
�x

(t1)
�
�
�



�
�

in to,t f�� �	

�1H:1�-�Hamiltonian for the system�
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Principle of Optimality 
(Bellman, 1957)�

An optimal policy has the property that whatever the initial state and 
initial decision are, the remaining decisions must constitute an optimal 
��
�����������
���������������������
���
�	�����������������������

 

�V *
�t t=t1

� �H x*(t1),u*(t1),
�V *
�x

(t1)
�
�
�



�
�

� �min
u
H x*(t1),u(t1),

�V *
�x

(t1)
�
�
�



�
�

in to,t f�� �	

HJB equation is a partial differential equation�

Boundary condition�

V * x * (t f )�� �� = � x * (t f )�� ��
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Necessary and�&A2H/51:@�
Condition for Optimality�

�V *
�t t= t1

= �min
u(t )

H x * (t1),u(t1),
�V *
�x

(t1)
�
�
�

�
�
�

Minimum of H w.r.t. u(t) requires 
stationarity and convexity�

12�



V*[x(t),t] is a Hypersurface That 
�1H:1?�!5:59A9��;?@��;:@>;8�

��V*[x(t),t] is the integral of the HJB equation�
–� V* is a scalar function of the state�

�� Ideally, the time-varying 
hypersurface of V* is bowl-shaped�

��Minimum of hypersurface 
?<1/5H1?�;<@59-8�/;:@>;8�<;85/E�

Time�

u * t( ) = u * V * x * t( )�� ��{ }

V * x * (t f )�� �� = � x * (t f )�� ��

At the terminal time �

13�

Space Shuttle 
Reentry Example�
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Optimal Guidance for Space 
Shuttle Reentry�

DGO =   Distance to Go
AGO =   Azimuth to Go
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Optimal Trajectories for �
Space Shuttle Reentry�

Altitude vs. Velocity� Range vs. Cross-Range 
(��footprint��)�

Numerical solutions using steepest-descent and conjugate-gradient algorithms�
16�



Optimal 
Controls for 
Space Shuttle 
Reentry�

�:381�;2��@@-/7�B?��&<1/5H/��:1>3E�

�� Independent variable is 
?<1/5H/�@;@-8�1:1>3E�>-@41>�
than time�

�� On reentry, total energy 
decreases as time increases�

%;88��:381�B?��&<1/5H/��:1>3E�
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Optimal Guidance System Derived 
from Optimal Trajectories�

Angle of Attack and Roll 
�:381�B?��&<1/5H/��:1>3E�

Diagram of Energy-Guidance Law�
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Guidance Functions for �
Space Shuttle Reentry�

Angle of Attack Guidance 
Function�

Roll Angle Guidance 
Function�

��Guidance surfaces can be implemented with�
–� Table lookup�
–� Computational neural networks�

19�

Relationship of HJB Equation to 
Other Principles of Optimality�

Calculus of Variations �
(Euler-Lagrange Equations)�

�V *
�x

(t1) = ��T (t1)

min
u
H x * (t1),u(t1),

�V *
�x

(t1)
�
�
�

	


�

in to,t f�� �� defines optimality

Minimum Principle�

 

�V *
�t t=t1

� �H x*(t1),u*(t1),
�V *
�x

(t1)
�
�
�



�
�

� �min
u
H x*(t1),u(t1),

�V *
�x

(t1)
�
�
�



�
�

in to,t f�� �	
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Terminal State 
Equality Constraint�

21�

Minimize a Cost Function Subject to 
a Terminal State Equality Constraint�

min
u(t )

J = � x(t f )�� �� + L x(t),u(t)[ ]
to

t f

� dt

 �x(t) = f[x(t),u(t)], x to( )   given

� x(t f )�� �� � 0  (scalar)

Dynamic Constraint�

Terminal State Equality Constraint�

�� subject to�

22�



Terminal State Equality Constraints�

Soft Constraint�

Hard Constraint�

� x(t f )�� �� � 0

 

min
u(t )

� x(t f )�� ��

� x(t f )�� �� � 0  is OK

� x(t f )�� �� = x1 f � xD � 0

� x(t f )�� �� = x1 f � xD � 0

Examples�

23�

Cost Function Augmented by 
Terminal State Equality Constraint�

 

JConstrained = JUnconstrained + µ� x(t f )�� ��
� J0 + µJ1

µ =  constant scalar Lagrange multiplier for terminal constraint

�� Separate solution into two parts�
�� Optimize original cost function alone�
�� Optimize for constraint alone�

24�



Euler-Lagrange Equations and 1st 
Variation  for Unconstrained 

Optimization�
��0 (t f ) =

��[x(t f )]
�x

�
�
�

�
�
	

T

 
���0 = � �H0[x,u,��0,t]

�x
�
�
	



�
�

T

= � �L
�x

+ ��0
T � f
�x

�
��



��

T

= � Lx + F
T��0�� 
�

�J0 =
�H0

�u
�u�

��
�

	

to

t f

� dt = Lu + ��0
TG( )�u

to

t f

� dt

�??A95:3�@4-@�@41?1�1=A-@5;:?�->1�?-@5?H10��@41�H>?@�B->5-@5;: is�
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Terminal Constraint ��Cost�� 
Augmented by Dynamic Constraint�

 

J1 =� x(t f )�� �� + ��1
T (t) f[x(t),u(t)]� �x(t)[ ]{ }

to

t f

� dt

=� x(t f )�� �� + ��1
T f[x,u]� ��1

T �x{ }
to

t f

� dt

 

J1 �� x(t f )�� �� + H1[x,u,��1
T ]� ��1

T �x{ }
to

t f

� dt

=� x(t f )�� �� + ��1
T (t0 )x(t0 )� ��1

T (t f )x(t f )�� ��

+ H1 x,u,��1[ ]+ ���1Tx{ }
to

t f

� dt H1 � ��1
T f[x,u]
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Euler-Lagrange Equations and 1st 
Variation  for Terminal Constraint 

��Cost����Stationarity�
��1(t f ) =

�� [x(t f )]
�x

�
�
�

�
�
	

T

 
���1 = �

�H1[x,u,��1,t]
�x

�
�
	



�
�

T

= � ��1
T �f
�x

�
��



��

T

= � FT��1�� 
�

�J1 =
�H1

�u
�u�

��
�

	

to

t f

� dt = ��1
TG�u( )

to

t f

� dt

�??A95:3�@4-@�@41?1�1=A-@5;:?�->1�?-@5?H10��@41�H>?@�B->5-@5;: is�
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First Variation of the 
Constrained Cost�

�J1 =
�H1

�u
�u�

��
�
	�
dt

to

t f

�

�JC = �J0 + µ�J1

= 0 for constrained stationarity

�J0 =
�H0

�u
�u�

��
�
	�
dt

to

t f

�

�JC = �J0 + µ�J1

= �H0

�u
+ µ �H1

�u
�
��



�� �u

to

t f

	 dt = Lu + ��0
TG( ) + µ��1

TG�� 
��u
to

t f

	 dt
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First Variation of the 
Constrained Cost�

�JC = �J0 + µ�J1 = 0

=
�H0

�u
+ µ �H1

�u
�
��



��
�u

to

t f

	 dt = Lu + ��0
TG( ) + µ��1

TG�� 
��u
to

t f

	 dt

Control perturbation is arbitrary, so chose��

�u = � �H1

�u
�
��

�

	
T

= � ��1
TG( )T , � =  arbitrary constant
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First Variation of the 
Constrained Cost�

 

�JC = Lu + ��0
TG( ) + µ��1

TG�� ���G
T��1

to

t f


 dt

= � Lu + ��0
TG( )GT��1 + µ��1

TGGT��1�� ��
to

t f


 dt

= � Lu + ��0
TG( )GT��1�� ��

to

t f


 dt + µ ��1
TGGT��1�� ��

to

t f


 dt
�
�
	

�	



�
	

�	
� � a + µb( )

�JC = 0  if  µ = � a
b

Solution for  terminal constraint Lagrange multiplier

30�



Controllability Gramian�

 
b � ��1

TGGT��1�� ��
to

t f

� dt � 0

For control of the terminal constraint, the 
controllability gramian must not equal zero��

��?A2H/51:@�/;:05@5;:�2;>�;<@59-85@E��

31�

Optimizing Control for 
Terminal Constraint�

�HC

�u
= �H0

�u
� a

b
�
��



��
�H1

�u
�
	�



��

= Lu + ��0
TG( )� a

b
�
��



�� ��1

TG�
	�



��
= 0

Choose u t( )  such that

32�



Linear, Time-Invariant 
Minimum-Time Problem�

33�

Linear, Time-Invariant Minimum-
Time Problem�

dx(t)
dt

= Fx(t) +Gu(t), x(0) = xo

Linear, time-invariant system, scalar control�

Control constraint�

c(u) = u �1 � 0

Cost function�

J = dt
0

t f

�

Terminal constraint�

� x t f( )�� �� = 0

34�



Linear, Time-Invariant Minimum-
Time Problem�

HC = 1+ ��T Fx +Gu( ) + µ�

Hamiltonian�

Adjoint equation�

 
��� = �

�HC

�x
�
��

�

�
T

= �FT��, �� t f( ) = ��
�x

t f( )�

	

�
��

Open-end time problem�

HC * t f( ) = 0
Time-invariant problem�

HC * t( ) = 0 on entire trajectory

35�

Linear, Time-Invariant 
Minimum-Time Problem�

�HC

�u
= ��TG , �

�2HC

�u2 = 0 �  Singular problem (not convex)

#<@59-85@E�/;:05@5;:?�:;@�?-@5?H10�

Minimum principle (smallest Hamiltonian) solves the problem�

1+ �� ��T Fx *+Gu *( ) � 1+ �� ��T Fx *+Gu( )
or
�� ��T Gu *( ) � �� ��T Gu( ),   most negative value

Optimal control is a 
switching law� u* =

+1, �� ��T G < 0

�1, �� ��T G > 0

�
�
�

�� 36�



��Bang-Bang�� Control of 
the Lunar Module�

 

��(t)
�q(t)

�

�
�
�

�

�
�
�
= 0 1

0 0
�

�
�

�

�
�

�(t)
q(t)

�

�
�
�

�

�
�
�
+

0
gA / Iyy

�

�
�
�

�

�
�
�
u(t)

Time evolution of the state while a thruster is on [u(t) = 1]�
Angular rate, deg/s:  q(t) = gA / Iyy( )t + q(0)

Angle, deg:  �(t) = gA / Iyy( )t 2 / 2 + q(0)t +�(0)

Neglecting initial conditions, what does the phase-plane 
plot (pitch rate vs. pitch angle) look like? �

Second-order system with ON/OFF reaction control  �

37�

Apollo Lunar Module Control�
�� 16 reaction control thrusters�

–� Control about 3 axes�
–� Redundancy of thrusters�

�� LM Digital Autopilot�
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Constant-Thrust 
(Acceleration) Trajectories�

For u = 1,�
Acceleration = gA/Iyy�

Thrusting away from the 
origin�

Thrusting to the 
origin�

With zero thrust, what does the phase-plane plot look like? �

For u = –1,�
Acceleration = –gA/Iyy�
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Switching-Curve Control 
Law for On-Off Thrusters�

�� Origin (i.e., zero rate 
and attitude error) 
can be reached 
from any point in 
the state space�

�� Control logic:�
–� Thrust in one 

direction until 
switching curve is 
reached�

–� Then reverse 
thrust�

–� Switch thrust off 
when errors are 
zero�
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Next Time:�
Constraints and 

Numerical Optimization�
�

Reading�
OCE: Section 3.5, 3.6�
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SSuupppplleemmeennttaarryy  
MMaatteerriiaall  
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Apollo Lunar Module 
Phase-Plane Control Logic�

�� Coast zones conserve RCS propellant by limiting angular rate�
�� With no coast zone, thrusters would chatter on and off at 

origin, wasting propellant�
�� State limit cycles about target attitude�
�� &C5@/45:3�/A>B1�?4-<1?�9;05H10�@;�<>;B501�robustness 

against modeling errors�
–� RCS thrust level�
–� Moment of inertia� 43�

Apollo Lunar Module 
Phase-Plane Control Law�

�� Switching logic implemented in the Apollo Guidance & 
Control Computer�

�� !;>1�12H/51:@�@4-:�-�85:1->�/;:@>;8�8-C�2;>�;:�;22�-/@A-@;>?�
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Typical Phase-Plane 
Trajectory�

�� With angle error, RCS turned on until reaching OFF 
switching curve�

�� Phase point drifts until reaching ON switching curve�
�� RCS turned off when rate is 0-�
��  595@�/E/81�9-5:@-5:10�C5@4�95:59A9�59<A8?1�%�&�H>5:3?�

–� �9<85@A01���G��013��/;->?1���G
���013��H:1��
45�


