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Minimization with
Equality Constraints



Minimization w

ith Equality

Constraint on State and Control

u(r)

minJ = q) x(t, ) JL[X(Z‘) u(t)]

= subject to

Dynamic Constraint dim(x)=nx1

X(r) = £[x(2),u(r)],

. dim(f)=rn x1
x(z,) given dhii(cn)= o<l

State/Control Equality Constraint

c[x(®),u(®)]=0 in(,,¢,); dim(e)=(rx1)<(mx1)

Aeronautical

Example:

Longitudinal Point-Mass Dynamics

Vz(T—CD;psz)/m—gsiny
=L (C 1 VZS)/m— cos
Y_V sz gcosy

x, =V : Velocity, m/s
x, =7 : Flight path angle, rad
x,=h: Height,m

x,=r: Range,m

X;=m: Mass, kg

h=Vsiny
r=Vcosy
=—(SFC)(T)

4 h
|




Aeronautical Example:
Longitudinal Point-Mass Dynamics

u, = oT : Throttle setting, %
u, = o : Angle of attack, rad

T=T,,. (¢”)8T :Thrust,N
Cp= (C b, +€C Lz) Drag coefficient
C, = C, o =Lift coefficient

S = Reference area, m*

m = Vehicle mass, kg

p = Air density = p,, e ”" kg/m’

g = Gravitational acceleration, m/s’

SFC = Specific Fuel Consumption, g/kN-s

Path Constraint Included in the Cost
Function Hamiltonian

Constraint must be satisfied at every instant of the trajectory
Dimension of the constraint = dimension of the control

5 =w[x) ]+ [{L+AT0[f - @]+ pc} ar

o

c[x(),u(t)]=0 in(@,,1,)

The constraint is adjoined to the Hamiltonian

dim(x) = dim(f) = dim(A) =n x 1
HEL+Af+p'cel |dimw=mx1

dim(c)=dim(u)=rx1,r <m




Euler-Lagrange Equations Including
Equality Constraint

a9Ix(t,)1)"

At )= {——L=

(tf){ ox }
L 9H[X’“’7~’°’W]}T__[3_L rof TET__ LT (ﬁf
A= { ox M T o) T EA(G )

T T T
{aH[X’“’x’c’”’t]} - (a_Lj +G%+(£j m(=0
Jdu Jdu Jdu
dim(x) =dim(A) =nx1

c[x(®),u@®)]=0 in(@,.1,)| |dim(F)=nxn

dim(G)=nxm
dim(u)= mx 1

dim(c)=dim(u)=rx1,r<m

No Optimization When r=m

= Control entirely specified by constraint
= munknowns, m equations

c[x(®),u(t)]=0= u(r) = fen|x(z]

Example
c= Ax(t) + Bu(t) =0; dimx)=nx1; dim(c)=dim(u)=mx1
dim(A)=mXxn; dim(B)=mxm
u(t)=-B'Ax(r)

= Constraint Lagrange multiplier is irrelevant but can be expressed
= from dH/du =0,

dc ) . )
— | is square and non-singular
u

de Y A oL\
=-| = = +G"A
H (M&uj ’

7



No Optimization When r=m

MAINTAIN CONSTANT VELOCITY AND FLIGHT PATH ANGLE

0=V = [TmaxéT (e +£CZ);pV2S}/m—gsiny

0=y = é[(CLaa;pVZS)/m—gcosy}

= u(t) = fon[x(t]

c[x(1),u(t)]|=0=

Effect of Constraint Dimensionality:
r<m

MINIMIZE FUEL AND CONTROL USE WHILE MAINTAINING
CONSTANT FLIGHT PATH ANGLE

Iy

minJ = (qn'fz2 +rul + rzug) dt
u(r)
t

o

_(CLaa%pVZ(t)S)

t) m

1
c[x(®).u@)]=0=y= T —gcosy(r)




dim(x)=nx1

Effect of Constraint | = ~"""
Dimensionality: r<m |(dgime)=rxi

(8cj.
— | is not square when r < m
Jdu

u

(g—c) is not strictly invertible

= Three approaches to constrained
optimization
= Algebraic solution for r control variables using
an invertible subset of the constraint
= Pseudoinverse of control effect
» “Soft” constraint

T Effect of Constraint

dm@=rx11  Dimensionality: r< m

Algebraic solution for r control variables using
an invertible subset of the constraint

Example 1
dim(x)=nx1; dim(A,)=rxn
dim(u)=mx1; dim(u,)=rx1; dim(B,)=rxr
c=Ax(t)+B,u,(1)=0; det(B,)=0
u, ()= —B, " Ax(¢)

Example 2
dim(u)=mx1; dim(u,)=rx1; dimB,)=rxr

u
cz[ B, B, ][ . }:B,urmzum,:o; det(B,)#0

m-—r

u,(1)=-B,'B,u,_ (1)

r




Second Approach: Satisfy Constraint
Using Left Pseudoinverse: r<m

L

T
Ka—) } is the left pseudoinverse of control sensitivity

L

T
dim{(g—ij } =rxm

Lagrange multiplier

o Gl B

Pseudoinverse of Matrix

y = Ax

dim(x)=rx1

’(mX1)=(m><r)(r><1)‘ dim(y) =mx1

r=m, A is square and non-singular

x=A"y

’(rx1)=(er)(mxl)z(rxr)(rxl)‘

r# m, A is not square
Use pseudoninverse of A

X = A#y — ATy MaX|mu.m rank _of Ais rorm,
whichever is smaller

’(r><1)=(r><m)(m><1)‘

’ See http:/len.wikipedia.org/wiki/Moore-Penrose_pseudoinverse




Left Pseudoinverse |y -nxi

Maximum rank of A is ror m,
whichever is smaller

dim(x)=rx1

dim(A"A)=rxr
dim(AA")=mxm

r< m, Left pseudoinverse is appropriate

Ax=y
A"Ax=A'"y

Averaging
solution

dim(x)=rx1

dim(y)=mx1

r> m, Right pseudoinverse is appropriate

Ax=y=Iy
Ax=(AAT)(AAT) y
= Iy

Minimum Euclidean
error norm solution

x=(ATA) ATy
AL2(ATA) AT

x=A"y

’(rxl)z(er)(le)‘

Right Pseudoinverse

dim(A"A)=rxr
dim(AA")=mxm

-1

Ax= A[AT (AA") y}
x=A"(AA") 'y
AR2AT(AAT)

x=A"y

’(mx1)=(m><r)(r><1)‘




Left Pseudoinverse Example

Unique solution

Right Pseudoinverse Example

Ax=y, r>m

x=AT(AA")y

X
Ax=y; [ 13 ]l B }=14 At least two solutions
1
3

{ ; H[ I3 ][ }}_1 14 { 2 ]:{ i }Saﬁsﬁes the equation, but |||, =20
[ " 1:{ L4 }and||x||2:\/19.6
X, 42

Minimum - norm solution |




Necessary Conditions Use Left
Pseudoinverse for r<m

Optimality conditions

) T ;v (O
7L(tf)={ ¢[;)(:f)]} X:—|:Lx +F 7\.+(8—:) u}
oL\ ., aeY B
with
c[x(t),u(r)|=0

Third Approach: Penalty Function
Provides “Soft” State-Control
Equality Constraint: r<m

>

L=L +éec’c ’8: Scalar penalty weight‘

original

Euler-Lagrange equations are adjusted accordingly

) {o"(b[x(tf)]}T A=-[L]+F2]
' ox = —[[ Loy +2ec” %j + F%]
ox ox

=0

ou ou

aLorig T dc ! T
|:( e _] HGA c[x(t),u(r)]=0




Equality Constraint on State Alone

c[x(®)]=0 in(,,t,)

J=y[x@)]+ j TL+ A ()[f —x(0)]+p"c} ar

Hamiltonian
HEL+MAf+p'c

Constraint is insensitive to control
perturbations to first order

Ac = (ﬁjmﬁ 9 | Au = (a—chx
ox d ox

w

0

Example of Equality Constraint
on State Alone

MINIMIZE FUEL AND CONTROL USE WHILE MAINTAINING
CONSTANT ALTITUDE

Iy

minJ = (qn'12 +ru’ + rzuj) dt
u(r)

o

C[X(t),“(t)] = C[X(t)] = O = h(t) o hdesired




c[x(n]
e~——" N\

Time

Introduce Time-Derivative

of Equality Constraint

Equality constraint has no effect on optimality
condition

fon
Ju

B

(oL
el GT
_(au) +G'A

T
a—L) +G A+
ou

B

Solution: Incorporate time-derivative of c[x(f)]

in

optimization

Introduce Time-Derivative
of Equality Constraint

clx(n]
g~ " N\

Time

Define c[x(1)] as the zeroth-order equality constraint

c[x(®)] =

(0) [X(Z)]

Compute first-order equality constraint

de" [x(1)] _

dc' [x(1)] N dc'” [x(1)]

dt

ot

A (1
A0

ox
[x(),u()]=0

f[x(1),u(r)]




clx(f]

Time-Derivative of
Equality Constraint

‘ P

Time

Optimality condition now includes
derivative of equality constraint

oH " oL 9cY
iuballl QR i 4|
ki [(au) e +£8uj “]

Subject to
¢[x(z,)]=0 or ¢ [X(tf)] =0

= With equality constraint satisfied at beginning or end of
trajectory, c( = 0 assures that constraint is satisfied throughout

= If &c(W/au = 0, differentiate again, and again, ...

State Equality Constraint Example

c[x(®)] 2V [x(1)]=0="h(r)-h

desired

No control in the constraint; differentiate

Y

¢V[x®)] _ oV [x(®)] | 9 [x(0)]

dt ot ox (000
2 eV [x(0)]=0="h(r)=V(r)siny(z)

Still no control in the constraint; differentiate again...




State Equality Constraint Example

Still no control in the constraint; differentiate again

de”[x(0)] _ 9¢" [x(0)] N de [x(1)] y

dt y e LOR

2c?[x()]=0=h(r)= Cfi—‘;(t)siny(t)+ V(1) d[SiI;Z/(t):I

= [(Tmaxﬂ (e"ﬁh) 5T—CD;pV2S)/m—gsiny}siny(t)
+cosy(t)[(CLaoc;pvzs)/m—gcosy}

State Equality Constraint Example

= Control appears in the 2"9-order equality constraint

¢?[x().u(t)]=0
| (T ()7 =€, @) PV ()3 ) ) gsiny (1) siny 1)

+cosy(t)[(CLna; p(h)Vz(t)Sj /m(t)— gcosy(t)}

H2L+A f+p"c?

= Oth- and 1st-order ©
constraints satisfied at |¢" [X(t,)]|=0 = h(t,))= Ny
some point on the (1) _ _
trajectory (e.g., t,) ¢ [X(to)] =0 = Y(t") =U




Minimization with
Inequality Constraints

“Hard” Inequality Constraints
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Inequallty Constraints
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Inequality Constraints
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“Soft” Control Inequality Constraint

L= Lon,ginal +éec’c| |e: Scalar penalty weight
[ -
Scalar Example ( U—u )2 . u>u,
clu@®)]=1 0 s Uy <u<u,.
(u—umin)z , uSumm

Soft Constraint

0
-10 £ -8 4 2 2 4 & 8 10

o
Control



Numerical
Optimization

Numerical Optimization Methods

Optimality Solution Method Order
of Iteration of ODE®
Solution x(1) (i) u(r) Variables Solution
Parametric approximate ODE® - I u(k,, 1) n
Penalty approximate I - I x(k,, 1), u(k,, 1) none
function
Dynamic exact ODE PDE* I u(f) n
programming
Neighboring exact ODE ODE w=0 A1) 2n
extremal
Quasilinearization exact I I =0 x(1), (1) 2n
Gradient exact ODE ODE I u(r) 2n

20DE: ordinary differential equation.

bIteration.

‘PDE: Partial differential equation;

HIB equation;

one

(n+1) independent variables (x, t), 8V /ax corresponds to A7,
dPerturbation equation for Ax(f) and AAN(r).

dependent variable (V),




Parametric
Optimization

min J = o[ x(t,) ]+ jL[X(t),u(t)]dt

subject to

x(t)=f[x()u(@)], x(t,)given

Control specified by a parameter vector, k
No adjoint equations

Examples
W)=k xamp
T
u(t)=ky +kt+kt +o, k=[ k@ koo km]
u(®)=k
u(t)=k, +kt+k,t> +--, k=[ k, k, K, ]
u(n) =k, +k,sin| —— |+k,cos| —— |, k=| k, k Kk, ]
t,—t, t—t,

Parametric Optimization

minJ = o[ x(r,) +jL x(1),u(t)dt

subject to
x()=f[x(t)u()], x(t,)given

Necessary and sufficient conditions aJ 0

for a minimum &_k -

Use static search algorithm to find 927

minimizing control parameter, k ~>0
Jk




n’l(glf=¢|:X(tf):|+jL[X(t),u(t)]dt Parametric
" Optimization
subject to
x(t)=1f[x(@®).u()], x(t,)given Exam ple
u(t) & (k, + kit +kyt)
V=(Tmax—CD1pV2Sj/m—gsin}/ kq
2
a=| k
y‘zl{[c (& +kt+kt2)lszS}/m—gcosy} k,
V L 0 1 2 2
: . aJ
h=Vsiny e 0
r=Vcosy 2
i=—(SFC)(T) T >0
Legendre Polynomials
1 I I |
-05 Po(x) =
P1(x)
P2(x)
P3(x)
Pa(x)
= | | L Psk) B

X

Solutions to Legendre’s differential equation




Legendre Polynomials

Polynomials can be generated

by Rodriques’s formula

Px)= g (-1 ]

T2 nldx”

Optimizing Control:

Find minimizing values of k,,

u(x) = koFy (x)+ kP, (x)+ k,P, (x)
+ky Py (x) + Ky Py (x) + ks Py (x) + -

!

A
X =

r.—t

o

P,(x)= %(3x2 —1)
P,(x)= %(5x3 - Sx)

P,(x)= é(35x4 ~30x° +3)

P(x)= %(63x5 —70x° + 15x)

Control History Optimized with
Legendre Polynomials Could be

expressed as a Simple Power Series

Ly

B (x)=1

;P (x) + kP, (x) + kS Py (x) 4+
P;(X)=%(5x3—3x)

u*(x)=a, +ax+a,x’

+ax" +a,x" tagx’ +--

P(x)= %(35,{‘ -30x"+3)

Ps(x)=%(63x5 ~70x* +15x)

@:@(

= -k

3

2

cg=k;-@(%)+a(§)+n
2 8

(2}




Parametric Optimization:
Collocation

Admissible controls occur at
discrete times, k s
Cost and dynamic constraint are
discretized

“Pseudospectral” Optimal Control:
State and adjoint points may be  cewe
connected by basis functions, e.g.,
Legendre polynomials

Continuous solution approached a

time interval decreased o o]
Time
k-l subject to
minJ = |:X ]+2Lx u .
u ¢ ky & [ ko k] x,,, =f[x.ul, x,given

http://en.wikipedia.org/wiki/Collocation_method

http://en.wikipedia.org/wiki/Legendre_polynomials

http://en.wikipedia.org/wiki/Pseudospectral_optimal_control

Penalty Function Method

Balakrishnan’ s “Epsilon” Technique s

Time

* No integration of the dynamic equation
Parametric optimization of the state and control history

x(t)=x(k,,t) dim(k, )=n
u(t)=u(k,.r) dim(k,)>m

Augment the integral cost function by
the dynamic equation error

min J = (p[x(tf),tf:l + J{L[x(t),u(t),t] + (é)({f[x(t),u(t),t] - X(t)}T {.})}dt

wrt u(t),x(1)

1/ € is the penalty for not satisfying the dynamic constraint




Penalty Function ,
Method

Choose reasonable starting values
of state and control parameters
— e.g., state and control satisfy

Lot 1 1 1

boundary conditions %00 e o0 100 1-_}uu 1400 1600 Tho

- Velocity, ft/see

« Evaluate cost function Taylor, Smith Iiff, 1969

Ty =[x, ]+ }{L[xo(t),u )]+ [é)({f[xo(t),uo(t)] —%,0) {o})}dt

Update state and control parameters (e.g., steepest descent)
T T
k,, =k, -a o1 Xm0 =3, 0
ky =k, l l ak“ k, =k,

u,, () =ulk, )
Re-evaluate cost with higher penalty
Repeat to convergence

—J*, €0, f[x(t).u()t]— %)

ol
K,

k., =k, - (xl

J, —=J

i+1

Neighboring Extremal k= —
Method

“Shooting Method”: Integrate both state
and adjoint vector forward in time

X (0O =fx,,,(0),u,0)], | =

X, (#,) given, initial guess for u,(¢)

0 Time

0= 2 AL ORO] A g

Xk

with

(1) defined by ZAOBORON [} )137 ()6, )] =0

... but how do you know the initial value of the adjoint vector?



! < Neighboring Extremal
i Method

i ’—/J All trajectories are optimal (i.e., “extremals™)

for some cost function because

M _y - G-
. =H,=[L,+AM'G]=0

Integrating state equation computes a value for ¢[X(tf)]

I x(t,)| .
e

X(t,) = X(t,)+ [flx,, ()0, (0O ¢[x(c))] >

Use a learning rule to estimate the initial value of the adjoint vector, e.g.,

A‘Ll (to) = 7&{ (to) - a[’»f (tf) — Miesirea ]T

Gradient-Based
Methods



Gradient-Based Search
Algorithms

Specify initial state,
X(t,), and starting
control history, u,(t,)

{

q

(=]

=77

& |

Simulation
program

Compute state
trajectory, xz(¢)

—_————

L

Compute linear
model [F(t). G{t)l
penalty gradients
[Lxu(®)k. and A(ty)

Compute adjoint
vector, Ax(t), and
control gradient,

EN0)

b.

Convexity,
normality, and
conjugate point
tests

Check
stopping
condition

Continue

u’(t) = u(t)
X*(t) = xp(t)

Perturb control
Uk () = Up(e) = Ky(XG,(0)

Gradient-Based Search Algorithms

7

| Steepest Descent

d
uk+l(t):uk(t)_8k|:

Ju

0]

T

k

7

el |

| Newton Raphson

u,, ()= uk(t)_|:

J*H
ou’

(r)ll[

JH

u

0]

\§

| Generalized Direct Search

JoH
d

g0l

u,,(H=u,0)-K, [—

T

k




Numerical Optimization Using -/ '
Steepest-Descent Algorithm :

Iterative bidirectional procedure

Forward solution to find the state, x(z)
Backward solution to find the adjoint vector, k(t)

Steepest-descent adjustment of control history, u(z)

x,(®)=1[x,(@®)u,_ ()], x(t,)given

Use educated guess for uy(t) on first iteration

R Numerical Optimization Using
= Steepest-Descent Algorithm

...........

. OH - T
lk(t)z—[g} =—[ LO+A (1)F©)]

k

ox

A,)= {M} |E— L #2 and #1|

Use x,_,(t) and u,_,(t) from previous step



Numerical Optimization Using
= Steepest-Descent Algorithm

.........

(‘;—H) =[LO+A ()G [E-L#3]

u
T
u(t)uk(t):|

=u,(t)—€| L, +A" (t)G(t)]kT

oH
u,_ (H)=u,(r)— e{x

Use x(t), A(t), and u(¢) from previous step

Finding the Best Steepest-Descent Gain

o, [u (), O<t<t j] : Best solution from the previous iteration

aaHu"(t), in0<r<1,

Calculate the gradient,

oH,
ou

. [uk(t)—sk

(1), 0<t< t_f} : Steepest - descent calculation of cost (1)

0H,
Ju

I, {uk (1)-2¢, (1), O<r<t f] : Steepest - descent calculation of cost (2)

J(&)=a,+ac+ae’

Jo, a, +a,(0)+a,(0)’ 1 0 0 a,
i = ao+al(€k)+az(£k)2 = 1 (&) (sk)Z |: 4 :|
I, a0+al(28k)+a2(28k)2 1 (28,) (2¢) %

Solve for a,,a,, and a,

Find &* that minimizes J (¢)

oH,
F u

Jou [ukﬂ (t)=u,(t)—¢e* (1), O<t< tj} . Best steepest - descent calculation of cost

Go to next iteration




Steepest-Descent Algorithm for
Problem with Terminal Constraint

I

minJ = ¢[ x(t,) |+ th[xa),u(t)] dt w[x@)]=0 (scalar)

JdH . {é’H ( j JH, :| 0 see Lecture 3 for a

Jdu Ju ou and b definitions

Chose u,,(f) such that

T
u(t)=uk(t):|

=u,()-¢e[ L, +G O, (1)], —biGTk(t)kl ([ xt))]

J0H .
Ju

u, @®=u,()- z{

Zero Gradient Algorithm for
Quadratic Control Cost

m1nJ ) x(tf)]+j{ [x(1)] +;u ()Ru(t)}dt

H[x(t),u),A1)]= {L[x(t)] + %uT (t)Ru(t)} + A" (O [x(@),u@)]

Optimality condition:
8H
)= (t

R+7\.T ():IEO




Zero Gradient Algorithm for
Quadratic Control Cost

8H
c?u |:u

HR+AT (¢ ():IEO

Optimal control, u*()
w ()R =—A#" (1)G*(1)
wi()=-R'G*' (1)A=()

But G, (¢) and A, (¢) are sub-optimal before convergence,

and optimal control cannot be computed in single step

.*. Chose u,,,(f) such that

u,., ()= (1_€)uk(t)_8[R_leT (1)A, (t):l

£ = Relaxation parameter < 1

Stopping Conditions for
Numerical Optimization

Computed total cost, J, reaches a J =0+¢
theoretical minimum, e.g., zero aa
Convergence of J is essentially Jo,>J, —¢€
complete

Control gradient, H,(f), is
essentially zero throughout [?,, t]

Terminal cost/constraint is
satisfied, and integral cost is jHT (H,_ (1)dr=0+e

H, (n|=0tein [z, ]

or

“good enough”

(pk+1(tf) =0+¢,0ory,,, (tf) =0zxe¢,and i'f.L[X(t),ll(l‘)]dl‘ <0




Optimal Treatment of
an Infection

Y
-5

x, = Concentration of a
pathogen, which displays
antigen

x, = Concentration of
plasma cells, which are
carriers and producers of
antibodies

x; = Concentration of
antibodies, which
recognize antigen and Kkill
pathogen

x, = Relative characteristic

of a damaged organ [0 =
healthy, 1 = dead]

Model of Infection and

Immune Response

Pathogen Killer,

L]

Pathogens,
%

k\

Organ,

>

X4

-

Antibody Enhancer,

Anllbodles

.\ s

Plasma Cells,

X .(

Plasma Cell Enhancer,
uz

Uy

Organ Health Enhancer,




=) Infection
e , Dynamics
\‘
A Fourth-order ordinary

e ! (ot—— differential equation, including
effects of therapy (control)

X, =(a, —a,x;)x, +bu, +w,
X, = Ay (x,)ay%, X5 — Ay (X, — X, %)+ byu, +w,

Xy = a3 X, — (A3, + a33x)X; + by +w,

X, =a,x, —a,x, +bu, +w,

Uncontrolled Response to Infection

]

—— subclinical
............ [ === clinical
== chronic

L T e lethal

;o m
b
n

B

Pathogens
(8]

Plasma Cells
(8]

]t b

-
: ‘-----_-.-.----—u-n.

[\8)

-
~———

0 = M

-,
-,
akad oY

Time units Time units



Cost Function to be Minimized by
Optimal Therapy

Iy
J:%(puxlzf"'p44x§f)+%;|.(%1x12 +Q44xi +ru2)dt

o

+ Tradeoffs between final values, integral values over a
fixed time interval, state, and control
+ Cost function includes weighted square values of
— Final concentration of the pathogen
— Final health of the damaged organ (0 is good, 1 is bad)
— Integral of pathogen concentration
— Integral health of the damaged organ (0 is good, 1 is bad)
— Integral of drug usage
+ Drug cost may reflect physiological cost (side effects)
or financial cost

* u, = Pathogen killer

Exam ples Of * u,=Plasma cell enhancer

* u; = Antibody enhancer

O pti m al Th e ra py * u, = Organ health enhancer
3 | \

| Unit cost weights |
2 8| &
(& ] ::‘
£4 34
8 10 20 2 4 6 > ;“ 10

Time units lterations



Effects of Increased Drug “Cost”

3

Pathogen
N

-

~
—

e

| r=100

Antibodies

Controls

Time units

5 =

w

Plasma Cells

E-y

Iterations

Next Time:
Minimum-Time and -Fuel

Problems

Reading
OCE: Section 3.5, 3.6



Supplemental Material

Examples of Equality Constraints

c[x(®),u(t)]=0
Pitch Moment = 0 = fcn(Mach Number, Stabilator Trim Angle)

clu(®)]=0
Stabilator Trim Angle — constant =0
c[x(®)]=0

Altitude — constant =0




Minimum-Error-Norm
Solution

dim(x)=rx1
dim(y)=mx1

r>m

= Euclidean error norm for linear equation

|Ax—y[, =[Ax - y] [Ax-y]

= Necessary condition for minimum error

0
—|Ax-y|; =2[Ax-y] =0
ox

= Express x as right pseudoinverse

T

2[Ax-y] = 2{A[AT (AAT)" y} - Y}

=2[y-y]' =0

_ 2{(AAT )(AAT) "y y}

T

= Therefore, x is the minimizing solution, as

long as AAT is non-singular




