
Path Constraints and
Numerical Optimization�

Robert Stengel�
 Optimal Control and Estimation, MAE

546, Princeton University, 2015�

+� State and Control
Equality Constraints�

+� Pseudoinverse�
+� State and Control

Inequality Constraints�

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only.�
http://www.princeton.edu/~stengel/MAE546.html�

http://www.princeton.edu/~stengel/OptConEst.html�

+� Numerical Methods�
–� Penalty function and collocation�
–� Neighboring optimal�
–� Quasilinearization�
–� Gradient�

+� Newton-Raphson�
+� Steepest descent�

+� Optimal Treatment of an Infection�

Minimization with
Equality Constraints�

Minimization with Equality
Constraint on State and Control�

min
u(t)

J = � x(t f)�� �� + L x(t),u(t)[]
to

t f

� dt

 �x(t) = f[x(t),u(t)], x to() given

c x(t),u(t)[] � 0 in (to, t f); dim(c) = r �1() � m �1()

Dynamic Constraint�

State/Control Equality Constraint�

�� subject to�
dim(x) = n �1
dim(f) = n �1
dim(u) = m �1

Aeronautical Example:�
Longitudinal Point-Mass Dynamics�

�V = T �CD
1
2
�V 2S�

��

�� m � gsin�

�� = 1
V

CL
1
2
�V 2S�

��

�� m � gcos��

	�

��

�h =V sin�
�r =V cos�
�m = � SFC() T()

x1 =V : Velocity, m/s
x2 = � : Flight path angle, rad
x3 = h : Height, m
x4 = r : Range, m
x5 = m : Mass, kg

Aeronautical Example:�
Longitudinal Point-Mass Dynamics�

T = TmaxSL
e��h()�T : Thrust, N

CD = CDo
+ �CL

2() Drag coefficient

CL = CL�
� = Lift coefficient

S = Reference area, m2

m = Vehicle mass, kg
� = Air density = �SLe

��h ,kg/m3

g = Gravitational acceleration, m/s2

SFC = Specific Fuel Consumption, g/kN-s

u1 = �T : Throttle setting, %
u2 =� : Angle of attack, rad

Path Constraint Included in the Cost
Function Hamiltonian�

J1 =� x(t f)�� �� + L + ��1

T (t) f � �x(t)[] + µµTc{ }
to

t f

� dt

 H � L + ��1
T f + µµTc

dim(x) = dim(f) = dim(��) = n �1
dim(u) = m �1
dim(c) = dim(µµ) = r �1, r � m

c x(t),u(t)[] � 0 in (to, t f)

�<;@A?.6;A�:B@A�/2�@.A6@K21�.A�2C2?F�6;@A.;A�<3�A52�A?.720A<?F�
Dimension of the constraint � dimension of the control�

The constraint is adjoined to the Hamiltonian�

Euler-Lagrange Equations Including
Equality Constraint �

��(t f) =
��[x(t f)]

�x
�
�
�

�
�
	

T

��� = �
�H[x,u,��,c,µµ,t]

�x

�
�

�
�
�

T

= �
�L
�x

+ ��T �f
�x

+ µµT �c
�x

�
	�

�
��

T

= � Lx
T + FT�� ++

�c
�x

�
��

��
T

µµ
�

	
�
�

�

�
�
�

�H[x,u,��,c,µµ,t]
�u

�
�

�
�
�

T

= �
�L
�u

�
��

��
T

+GT�� +
�c
�u

�
��

��
T

µµ
�

	
�
�

�

�
�
�
= 0

c x(t),u(t)[] � 0 in (to, t f)
dim(x) = dim(��) = n �1
dim F() = n � n
dim G() = n � m
dim(u) = m �1
dim(c) = dim(µµ) = r �1, r � m

No Optimization When r = m�
�� �<;A?<9�2;A6?29F�@=206K21�/F�0<;@A?.6;A�

�� m unknowns, m equations�

µµ = �
�c
�u

�
��

��
�T �L

�u
�
��

��
T

+GT��
�

	
�
�

�
�
�

c x(t),u(t)[] � 0� u(t) = fcn x(t[]

�c
�u

�
��

�
��

 is square and non-singular

�� Constraint Lagrange multiplier is irrelevant but can be expressed�
�� from dH/du = 0,�

Example
c = Ax t() +Bu t() = 0; dim(x) = n �1; dim(c) = dim(u) = m �1

dim(A) = m � n; dim(B) = m �m
u t() = �B�1Ax t()

No Optimization When r = m�

c x(t),u(t)[]� 0 =
0 = �V = Tmax�T � CDo

+ �CL
2() 12 �V

2S�
�

�
��
m � gsin�

0 = �� = 1
V

CL�
� 1
2
�V 2S	

�

�
�� m � gcos��

�
�
��

�

�

�

�

�
�
�
�

� u(t) = fcn x(t[]

MAINTAIN CONSTANT VELOCITY AND FLIGHT PATH ANGLE�

V 0() =Vdesired
� 0() = � desired

Effect of Constraint Dimensionality:
r < m�

c x(t),u(t)[]� 0 = �� = 1
V t()

CL�
� 1
2
�V 2 t()S�

��
�
�

m
� gcos� t()

	

�

�

�

�
�
�
�

MINIMIZE FUEL AND CONTROL USE WHILE MAINTAINING
CONSTANT FLIGHT PATH ANGLE�

min
u(t)

J = q �m2 + r1u1
2 + r2u2

2()
to

t f

� dt

� 0() = � desired

Effect of Constraint
Dimensionality: r < m�

dim(x) = n �1
dim(u) = m �1
dim(c) = r �1

�c
�u

�
��

�
�� is not square when r < m

� �c
�u

�
��

�
�� is not strictly invertible

�� Three approaches to constrained
optimization�
�� Algebraic solution for r control variables using

an invertible subset of the constraint�
�� Pseudoinverse of control effect�
�� ��Soft�� constraint�

Effect of Constraint
Dimensionality: r < m�

dim(u) = m �1
dim(c) = r �1

Algebraic solution for r control variables using
an invertible subset of the constraint�

Example1
dim(x) = n �1; dim(Ar) = r � n

dim(u) = m �1; dim(ur) = r �1; dim(Br) = r � r
c = Arx t() +Brur t() = 0; det(Br) � 0

ur t() = �Br
�1Ax t()

Example 2
dim(u) = m �1; dim(ur) = r �1; dim(B1) = r � r

c = B1 B2�
�

�
	

ur
um�r

�

�
�
�

�

	
�
�
= B1ur +B2um�r = 0; det(B1) � 0

ur t() = �B1
�1B2um�r t()

Second Approach: Satisfy Constraint
Using Left Pseudoinverse: r < m�

µµL = �
�c
�u

�
��

��
T�

	
�
�

�
�
�

L
�L
�u

�
��

��
T

+GT��
�

	
�
�

�
�
�

Lagrange multiplier�

�c
�u

�
��

	
�

T�

�
�

�

�

L

 is the left pseudoinverse of control sensitivity

dim �c
�u

�
��

	
�

T�

�
�

�

�

L

= r �m

Pseudoinverse of Matrix�
y = Ax dim(x) = r �1

dim(y) = m �1

r = m, A is square and non-singular�

x = A�1y

r � m, A is not square�
Use pseudoninverse of A�

x = A#y = A†y Maximum rank of A is r or m,
whichever is smaller�

r �1() = r � m() m �1() = r � r() r �1()

m �1() = m � r() r �1()

r �1() = r � m() m �1()

See http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse�

Left Pseudoinverse�

r < m, Left pseudoinverse is appropriate�

Averaging
solution�

Maximum rank of A is r or m,
whichever is smaller�

dim ATA() = r � r
dim AAT() = m � m

Ax = y
ATAx = ATy

x = ATA()�1ATy

AL � ATA()�1AT

x = ALy

dim(x) = r �1
dim(y) = m �1

r �1() = r � m() m �1()

Right Pseudoinverse�

r > m, Right pseudoinverse is appropriate�

Minimum Euclidean
error norm solution�

Ax = y = Iy

Ax = AAT() AAT()�1 y
= Iy

Ax = A AT AAT()�1 y�
�

�
�

x = AT AAT()�1 y
AR � AT AAT()�1

x = ARy

dim ATA() = r � r
dim AAT() = m � m

m �1() = m � r() r �1()

dim(x) = r �1
dim(y) = m �1

Left Pseudoinverse Example�
Ax = y, r < m

x = ATA()�1ATy

1
3

�

�
�

	

�

 x =

2
6

�

�
�

	

�

x = 1 3�� 	�
1
3

�

�
�

	

�

�
�
�

��

�

�

��

�1

1 3�� 	�
2
6

�

�
�

	

�

= 1
10

20() = 2
Unique solution

Right Pseudoinverse Example�
Ax = y, r > m

x = AT AAT()�1 y

Ax = y; 1 3�� 	�
x1
x2

�

�
�
�

	

�

= 14

x1
x2

�

�
�
�

	

�

= 1

3
�

�
�

	

�

 1 3�� 	�

1
3

�

�
�

	

�

�
�
�

��

�

�

��

�1

14

=

1
3

�

�
�

	

�

10
14() = 1.4

4.2
�

�
�

	

�

At least two solutions

x1

x2

�

�
�
�

�

�
�
�
= 2

4
�

�
�

�

�
� satisfies the equation, but x 2 = 20

x1

x2

�

�
�
�

�

�
�
�
= 1.4

4.2
�

�
�

�

�
� and x 2 = 19.6

Minimum - norm solution

Necessary Conditions Use Left
Pseudoinverse for r < m�

Optimality conditions�

�L
�u

�
��

	
�

T

+GT�� +
�c
�u

�
��

	
�

T

µµ
�

�
�
�

�

�

= 0

with�

��(t f) =
��[x(t f)]

�x
�
�
�

�
�
	

T

��� = � Lx
T + FT�� ++

�c
�x

�
��

��
T

µµ
�

	
�
�

�
�
�

c x(t),u(t)[] � 0

Third Approach: Penalty Function
Provides ��Soft�� State-Control

Equality Constraint: r < m�

 L � Loriginal + �cTc

�Lorig
�u

+ 2�cT �c
�u

�
��

��

T

+GT��
�

	
�
�

�
�
�
= 0

��(t f) =
��[x(t f)]

�x
�
�
�

�
�
	

T

c x(t),u(t)[] � 0

��� = � Lx
T + FT���
 ��

= �
�Lorig
�x

+ 2�cT �c
�x

�
��

�
�

T

+ FT��
�

	
	

�

�
�
�

Euler-Lagrange equations are adjusted accordingly�

� : Scalar penalty weight

Equality Constraint on State Alone�

Hamiltonian�

J1 =� x(t f)�� �� + L + ��1

T (t) f � �x(t)[] + µµTc{ }
to

t f

� dt

 H � L + ��1
T f + µµTc

c x(t)[] � 0 in (to, t f)

Constraint is insensitive to control
=2?AB?/.A6<;@�A<�K?@A�<?12?�

�c = �c
�x

�
��

�
��
�x + �c

�u
�
��

�
��
�u = �c

�x
�
��

�
��
�x

0�

Example of Equality Constraint
on State Alone�

c x(t),u(t)[] = c x(t)[] = 0 = h t()� hdesired

min
u(t)

J = q �m2 + r1u1
2 + r2u2

2()
to

t f

� dt

MINIMIZE FUEL AND CONTROL USE WHILE MAINTAINING
CONSTANT ALTITUDE�

Introduce Time-Derivative
of Equality Constraint�

Equality constraint has no effect on optimality
condition �

�H
�u

�
�

�
�
�

T

= � �L
�u

�
��

��
T

+GT�� + �c
�u

�
��

��
T

µµ
�

	
�

�

�
�

= � �L
�u

�
��

��
T

+GT��
�

	
�

�

�
�

Solution: Incorporate time-derivative of c[x(t)]
in optimization�

Introduce Time-Derivative
of Equality Constraint�

�2K;2�c[x(t)] as the zeroth-order equality constraint�

 c x(t)[] � c(0) x(t)[] � 0
Compute K?@A�<?12?�2>B.96AF�0<;@A?.6;A�

dc(0) x(t)[]
dt

=
�c(0) x(t)[]

�t
+
�c(0) x(t)[]

�x
f x(t),u(t)[]

� c(1) x(t),u(t)[] = 0

Time-Derivative of
Equality Constraint�

Optimality condition now includes
derivative of equality constraint�

�H
�u

�
�

�
�
�

T

= �
�L
�u

�
��

��
T

+GT�� +
�c(1)

�u
�
��

��

T

µµ
�

	
�
�

�

�
�
�

Subject to�
c(0) x(to)[] � 0 or c(0) x(t f)�� �� � 0

��)6A5�2>B.96AF�0<;@A?.6;A�@.A6@K21�.A�/246;;6;4�<?�2;1�<3�
trajectory, c(1) = 0�.@@B?2@�A5.A�0<;@A?.6;A�6@�@.A6@K21�A5?<B45<BA�

�� If �c(1)/�u = 0, differentiate again, and again, …�

State Equality Constraint Example�

 c x(t)[]� c 0() x(t)[] = 0 = h t()� hdesired
No control in the constraint; differentiate�

Still no control in the constraint; differentiate again…�

dc(0) x(t)[]
dt

=
�c(0) x(t)[]

�t
+
�c(0) x(t)[]

�x
f x(t),u(t)[]

� c(1) x(t)[] = 0 = �h t() =V t()sin� t()

State Equality Constraint Example�
Still no control in the constraint; differentiate again�

dc(1) x(t)[]
dt

=
�c(1) x(t)[]

�t
+
�c(1) x(t)[]

�x
f x(t),u(t)[]

� c(2) x(t)[] = 0 = ��h t() = dV
dt

t()sin� t() +V t() d sin� t()� ��
dt

= TmaxSL e��h()�T �CD
1
2
�V 2S�

	
�
�� m � gsin��

�
�
��
sin� t()

+cos� t() CL�
� 1
2
�V 2S�

	
�
�� m � gcos��

�
�
��

State Equality Constraint Example�

c 0() x(t0)[] = 0 � h t0() = hdesired
c 1() x(t0)[] = 0 �� t0() = 0

�� Control appears in the 2nd-order equality constraint�

c(2) x(t),u t()
� �� = 0

= TmaxSL e��h()�T �CD �() 1
2
� h()V 2 t()S�

	�

�� m t()� gsin� t()

��
�
��
sin� t()

+cos� t() CL�
� 1
2
� h()V 2 t()S�

	�

�� m t()� gcos� t()

��
�
��

�� 0th- and 1st-order
0<;@A?.6;A@�@.A6@K21�.A�
some point on the
trajectory (e.g., t0)�

 H � L + ��1
T f + µµTc 2()

Minimization with
Inequality Constraints�

“Hard” Inequality Constraints�

Inequality Constraints�

Inequality Constraints�

Inequality Constraints�

“Soft” Control Inequality Constraint�

 L � Loriginal + �cTc � : Scalar penalty weight

c u(t)[] =
u � umax()2

0
u � umin()2

, u � umax
, umin < u < umax
, u � umin

�

�
��

�
�
�

Scalar Example�

Numerical
Optimization�

Numerical Optimization Methods�

Parametric
Optimization�

�<;A?<9�@=206K21�/F�.�=.?.:2A2?�C20A<?� k�
No adjoint equations�

min
u(t)

J = � x(t f)�� �� + L x(t),u(t)[]
to

t f

� dt

subject to
�x(t) = f[x(t),u(t)] , x(to) given

u(t) = k

u(t) = k0 + k1t + k2t
2 +�, k = k0 k1 � km�

�
�
�
T

u(t) = k

u(t) = k0 + k1t + k2t
2 +�, k = k0 k1 � km�

�
�
�

u(t) = k0 + k1 sin
�t

t f � t0

�

��
�

	
+ k2 cos

�t
t f � t0

�

��
�

	
, k = k0 k1 k2�

�
�
�

Examples�

Parametric Optimization�

+� 202@@.?F�.;1�@B3K062;A�0<;16A6<;@�
for a minimum�

+� '@2�@A.A60�@2.?05�.94<?6A5:�A<�K;1�
minimizing control parameter, k�

min
u(t)

J = � x(t f)�� �� + L x(t),u(t)[]
to

t f

� dt

subject to
�x(t) = f[x(t),u(t)] , x(to) given

�J
�k

= 0

� 2J
�k2

> 0

Parametric
Optimization

Example�

min
u(t)

J = � x(t f)�� �� + L x(t),u(t)[]
to

t f

� dt

subject to
�x(t) = f[x(t),u(t)] , x(to) given

a =
k0
k1
k2

�

�

�
�
�

�

�

�
�
�

� J
�k

= 0

� 2 J
�k2

> 0

�V = Tmax �CD
1
2
�V 2S�

��

�� m � gsin�

�� = 1
V

CL k0 + k1t + k2t
2() 12 �V

2S�
	�

�
��
m � gcos�

�
�

�
�
�

�h =V sin�
�r =V cos�
�m = � SFC() T()

u t() � k0 + k1t + k2t

2()

Legendre Polynomials�

Solutions to Legendre’s differential equation�

Legendre Polynomials�
P0 x() = 1
P1 x() = x

P2 x() = 1
2
3x2 �1()

P3 x() = 1
2
5x3 � 3x()

P4 x() = 1
8
35x4 � 30x2 + 3()

P5 x() = 1
8
63x5 � 70x3 +15x()

Polynomials can be generated
by Rodriques’s formula�

Pn x() = 1
2n n!

dn

dxn
x2 �1()n�

�
�
�

Optimizing Control: �
Find minimizing values of kn�

u x() = k0P0 x() + k1P1 x() + k2P2 x()
+k3P3 x() + k4P4 x() + k5P5 x() +�

x � t

t f � to

Control History Optimized with
Legendre Polynomials Could be

expressed as a Simple Power Series�
P0 x() = 1
P1 x() = x

P2 x() = 1
2
3x2 �1()

P3 x() = 1
2
5x3 � 3x()

P4 x() = 1
8
35x4 � 30x2 + 3()

P5 x() = 1
8
63x5 � 70x3 +15x()

u * x() = k0*P0 x() + k1*P1 x() + k2*P2 x()
+k3

*P3 x() + k4*P4 x() + k5*P5 x() +�

u * x() = a0* + a1*x + a2*x2

+a3
*x3 + a4

*x4 + a5
*x5 +�

a0
* = k0

* � k2
* 1
2

�
��

�
�� + k4

* 3
8

�
��

�
�� +�

a1
* = k1

* � k3
* 3
2

�
��

�
�� + k5

* 15
8

�
��

�
�� +�

a2
* = k2

* 3
2

�
��

�
�� � k4

* 30
8

�
��

�
�� +�

�

Parametric Optimization:
Collocation�

+� Admissible controls occur at
discrete times, k�

+� Cost and dynamic constraint are
discretized�

+� “Pseudospectral” Optimal Control:
State and adjoint points may be
connected by basis functions, e.g.,
Legendre polynomials�

+� Continuous solution approached as
time interval decreased�

min
uk

J = � xk f�� �� + L xk ,uk[]
k=0

k f �1

�
subject to
xk+1 = fk[xk ,uk] , x0 given

http://en.wikipedia.org/wiki/Legendre_polynomials�

http://en.wikipedia.org/wiki/Collocation_method�

http://en.wikipedia.org/wiki/Pseudospectral_optimal_control�

Penalty Function Method�
Balakrishnan��s ��Epsilon�� Technique�

min

wrt u(t),x(t)
J = � x(t f),t f�� �� + L x(t),u(t),t[] + 1

�
�
��

��
f x(t),u(t),t[]� �x(t){ }T 	{ }()	

�

�
�
�
dt

to

t f

�

+� No integration of the dynamic equation�
+� Parametric optimization of the state and control history�

+� Augment the integral cost function by
the dynamic equation error�

x(t) � x(kx ,t)
u(t) � u(ku ,t)

dim(kx) � n
dim(ku) � m

1 / � is the penalty for not satisfying the dynamic constraint

Penalty Function
Method�
+� Choose reasonable starting values

of state and control parameters�
–� e.g., state and control satisfy

boundary conditions�
+� Evaluate cost function�

Update state and control parameters (e.g., steepest descent)�

kxi+1 = kxi ��
�J
�kx kx =kxi

�

�
�
�

�

	
�
�

T

kui+1 = kui ��
�J
�ku ku =kui

�

�
�
�

�

	
�
�

T

J0 = � x0 (t f)�� �� + L x0 (t),u (t)[] + 1

�
�
��

��
f x0 (t),u0 (t)[]� �x0 (t){ }T 	{ }()	

�

�
�
�
dt

to

t f

�

xi+1(t) � x(kxi+1 ,t)
ui+1(t) � u(kui+1 ,t)

Re-evaluate cost with higher penalty��
Repeat to convergence�

 Ji � Ji+1 � J*, � � 0, f x(t),u(t),t[]� �x(t)

Taylor, Smith Iliff, 1969�

Neighboring Extremal
Method�
��Shooting Method��: Integrate both state

and adjoint vector forward in time�

with

uk+1(t) defined by �H[xk (t),uk (t),�� k+1(t),t]
�u

= Luk (t) + �� k+1
T t()Gk (t)�� �� = 0

... but how do you know the initial value of the adjoint vector?�

��� k+1(t) = �
�L
�x k

t() + �� k+1
T t()Fk t()�

�
�

�

	
�

T

, �� k (t0) given

�xk+1(t) = f[xk+1(t),uk (t)],
x0 (t0) given, initial guess for u0 (t)

Neighboring Extremal
Method�

All trajectories are optimal (i.e., ��extremals��)
for some cost function because �

�H
�u

= Hu = Lu + ��TG�� �� = 0

Integrating state equation computes a value for�

x(t f) = x(t0)+ f[xk+1(t),uk (t)]
t0

t f

� ; � x(t f)�� 	
�
�� x(t f)�� 	

�x
= ���� t f()

Use a learning rule to estimate the initial value of the adjoint vector, e.g.,�

�� k+1
T t0() = �� k

T t0() �� �� k
T t f() � ��desired�� ��

T

� x t f()�� ��

Gradient-Based
Methods�

Gradient-Based Search
Algorithms�

Gradient-Based Search Algorithms�

uk+1(t) = uk (t) �
� 2H
�u2

t()�

�
�

�

�
�
k

�1
�H
�u

t()�
��

�
��k

T

uk+1(t) = uk (t) � �k
�H
�u

t()�
��

�
	�k

T

Steepest Descent�

Newton Raphson�

Generalized Direct Search�

uk+1(t) = uk (t) �Kk
�H
�u

t()�
��

�
��k

T

Numerical Optimization Using
Steepest-Descent Algorithm�

Iterative bidirectional procedure�

 �xk (t) = f[xk (t),uk�1(t)] , x(to) given

Use educated guess for u0�(��#"�1&'(��(�&�(�#"�

Forward solution to find the state, x t()
Backward solution to find the adjoint vector, �� t()

Steepest-descent adjustment of control history, u t()

Numerical Optimization Using
Steepest-Descent Algorithm�

��� k (t) = �
�H
�x

�
��

�
�k

T

= � Lx (t) + ��T t()F(t)�� �k
T
,

��(t f) =
��[x(t f)]

�x
�
	

�
�
�

T

E � L #2 and #1[]

Use xk-1(t) and uk-1(t) from previous step�

Numerical Optimization Using
Steepest-Descent Algorithm�

uk+1(t) = uk (t)� �
�H
�u u(t)=uk (t)

�

�
�

�

	

T

= uk (t)� � Lu + ��T t()G(t)�� �
k
T

�H
�u

�
��

	
�
 k

= Lu(t) + ��T t()G(t)�� �k E � L #3[]

Use x t(), �� t(), and u t() from previous step

Finding the Best Steepest-Descent Gain�
J0k

uk t(), 0 < t < t f�� �	 : Best solution from the previous iteration

Calculate the gradient, �Hk

�u
t(), in 0 < t < t f

J1k
uk t()� � k

�Hk

�u
t(), 0 < t < t f

�
��

�
	�

: Steepest - descent calculation of cost (1)

J2k
uk t()� 2� k

�Hk

�u
t(), 0 < t < t f

�
��

�
	�

: Steepest - descent calculation of cost (2)

J �() = a0 + a1� + a2�
2

J0k

J1k

J2k

�

�

�
�
�
�

�

	

�
�
�
�

=

a0 + a1 0() + a2 0()2

a0 + a1 � k() + a2 � k()2

a0 + a1 2� k() + a2 2� k()2

�

�

�
�
�
�
�

�

	

�
�
�
�
�

=

1 0 0
1 � k() � k()2

1 2� k() 2� k()

�

�

�
�
�
�

�

	

�
�
�
�

a0

a1

a2

�

�

�
�
�

�

	

�
�
�

Solve for a0, a1, and a2

Find �* that minimizes J �()

Jk+1 uk+1 t() = uk t()� � *k
�Hk

�u
t(), 0 < t < t f

�
��

�
	�

: Best steepest - descent calculation of cost

Go to next iteration

Steepest-Descent Algorithm for
Problem with Terminal Constraint�

Chose uk+1(t) such that�

�HC

�u
=

�H0

�u
�

a
b

�
��

	
�

�H1

�u
�
��

�
�
= 0

uk+1(t) = uk (t)� �
�HC

�u u(t)=uk (t)

�

�
�

	

�

T

= uk (t)� � Lu
T +GT (t)��0 t()�� 	�k � 1

bk
GT

k (t)��1 t()� k x(t f)�� 	�

min
u(t)

J = � x(t f)�� �� + L x(t),u(t)[]
to

t f

� dt � x(t f)�� �� � 0 (scalar)

see Lecture 3 for a
and b���1"�(�#"'�

Zero Gradient Algorithm for
Quadratic Control Cost�

min
u(t)

J = � x(t f)�� �	 + L x(t)[]+ 1
2
uT t()Ru t()�

�
�

�
�to

t f

� dt

�H
�u

t() = Hu t() = uT t()R + ��T t()G t()�� �� � 0

H x(t),u(t),��(t)[] = L x(t)[]+ 1
2
uT t()Ru t()�

�
�

�
�
�
+ ��T (t)f x(t),u(t)[]

Optimality condition: �

Zero Gradient Algorithm for
Quadratic Control Cost�

Chose uk+1(t) such that�

uk+1(t) = 1� �()uk (t)� � R�1Gk
T t()�� k t()�� ��

� � Relaxation parameter < 1

�H
�u

t() = Hu t() = uT t()R + ��T t()G t()�� �� � 0

u*T t()R = ��� ��T t()G* t()
u* t() = �R�1G*T t()�� �� t()

Optimal control, u*(t) �

But Gk t() and �� k t() are sub-optimal before convergence,
and optimal control cannot be computed in single step

�

Stopping Conditions for
Numerical Optimization�

�� Computed total cost, J, reaches a
theoretical minimum, e.g., zero�

�� Convergence of J is essentially
complete�

�� Control gradient, Hu(t), is
essentially zero throughout [to, tf]�

�� Terminal cost/constraint is
@.A6@K21��.;1�6;A24?.9�0<@A�6@�
“good enough”�

Jk+1 > Jk � �

Jk+1 = 0 + �

Huk+1
t() = 0 ± � in to,t f�� ��

or

Huk+1

T t()Huk+1
t()dt

to

t f

� = 0 + �

�k+1 t f() = 0 + � , or � k+1 t f() = 0 ± � , and L x t(),u t()�� �	dt < �
to

t f

�

Optimal Treatment of
an Infection�

Model of Infection and
Immune Response�

�� x1 = Concentration of a
pathogen, which displays
antigen�

�� x2 = Concentration of
plasma cells, which are
carriers and producers of
antibodies�

�� x3 = Concentration of
antibodies, which
recognize antigen and kill
pathogen�

�� x4 = Relative characteristic
of a damaged organ [0 =
healthy, 1 = dead]�

Infection
Dynamics�

�x1 = (a11 � a12x3)x1 + b1u1 + w1
�x2 = a21(x4)a22x1x3 � a23(x2 � x2*) + b2u2 + w2
�x3 = a31x2 � (a32 + a33x1)x3 + b3u3 + w3
�x4 = a41x1 � a42x4 + b4u4 + w4

Fourth-order ordinary
differential equation, including

effects of therapy (control)�

Uncontrolled Response to Infection�

Cost Function to be Minimized by
Optimal Therapy�

J =
1
2
p11x1 f

2 + p44x4 f
2() + 12 q11x1

2 + q44x4
2 + ru2()dt

to

t f

�

+� &?.12<33@�/2AD22;�K;.9�C.9B2@��6;A24?.9�C.9B2@�<C2?�.�
KE21�A6:2�6;A2?C.9��@A.A2��.;1�0<;A?<9�

+� Cost function includes weighted square values of�
–� Final concentration of the pathogen�
–� Final health of the damaged organ (0 is good, 1 is bad)�
–� Integral of pathogen concentration�
–� Integral health of the damaged organ (0 is good, 1 is bad)�
–� Integral of drug usage�

+� �?B4�0<@A�:.F�?2L20A�=5F@6<9<460.9�0<@A��@612�23320A@��
<?�K;.;06.9�0<@A�

Examples of
Optimal Therapy�

�� u1 = Pathogen killer�
�� u2 = Plasma cell enhancer�
�� u3 = Antibody enhancer�
�� u4 = Organ health enhancer�

Unit cost weights�

Effects of Increased Drug ��Cost���
r = 100�

Next Time:�
Minimum-Time and -Fuel

Problems�
�

Reading�
OCE: Section 3.5, 3.6�

Supplemental Material�

Examples of Equality Constraints �

c x(t),u(t)[] � 0
Pitch Moment = 0 = fcn(Mach Number, Stabilator Trim Angle)

c u(t)[] � 0
Stabilator Trim Angle – constant = 0

c x(t)[] � 0
Altitude – constant = 0

Minimum-Error-Norm
Solution�

�� Euclidean error norm for linear equation �

Ax � y 2
2 = Ax � y[]T Ax � y[]

2 Ax � y[]T = 2 A AT AAT()�1 y�
�

�
� � y{ }T = 2 AAT() AAT()�1 y � y{ }T

= 2 y � y[]T = 0

dim(x) = r �1
dim(y) = m �1
r > m

�� Necessary condition for minimum error �
�
�x
Ax � y 2

2 = 2 Ax � y[]T = 0

�� Express x as right pseudoinverse �

�� Therefore, x is the minimizing solution, as
long as AAT is non-singular �

