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+� Numerical Methods�
–� Penalty function and collocation�
–� Neighboring optimal�
–� Quasilinearization�
–� Gradient�

+� Newton-Raphson�
+� Steepest descent�

+� Optimal Treatment of an Infection�

Minimization with 
Equality Constraints�



Minimization with Equality 
Constraint on State and Control�

min
u(t )

J = � x(t f )�� �� + L x(t),u(t)[ ]
to

t f

� dt

 �x(t) = f[x(t),u(t)], x to( )   given

c x(t),u(t)[ ] � 0  in (to, t f );   dim(c) = r �1( ) � m �1( )

Dynamic Constraint�

State/Control Equality Constraint�

�� subject to�
dim(x) = n �1
dim(f ) = n �1
dim(u) = m �1

Aeronautical Example:�
Longitudinal Point-Mass Dynamics�

 

�V = T �CD
1
2
�V 2S�

��


�� m � gsin�

�� = 1
V

CL
1
2
�V 2S�

��


�� m � gcos��

	�

��

�h =V sin�
�r =V cos�
�m = � SFC( ) T( )

 

x1 =V :  Velocity, m/s
x2 = � :   Flight path angle, rad
x3 = h :   Height, m
x4 = r :    Range, m
x5 = m :   Mass, kg



Aeronautical Example:�
Longitudinal Point-Mass Dynamics�

T =  TmaxSL
e��h( )�T : Thrust, N

CD = CDo
+ �CL

2( )  Drag coefficient

CL =  CL�
� = Lift coefficient

S =  Reference area, m2

m =  Vehicle mass, kg
� =  Air density = �SLe

��h ,kg/m3

g =  Gravitational acceleration, m/s2

SFC  = Specific Fuel Consumption, g/kN-s

u1 = �T :  Throttle setting, %
u2 =� : Angle of attack, rad

Path Constraint Included in the Cost 
Function Hamiltonian�

 
J1 =� x(t f )�� �� + L + ��1

T (t) f � �x(t)[ ] + µµTc{ }
to

t f

� dt

 H � L + ��1
T f + µµTc

dim(x) = dim(f ) = dim(��) = n �1
dim(u) = m �1
dim(c) = dim(µµ) = r �1, r � m

c x(t),u(t)[ ] � 0  in (to, t f )

�<;@A?.6;A�:B@A�/2�@.A6@K21�.A�2C2?F�6;@A.;A�<3�A52�A?.720A<?F�
Dimension of the constraint � dimension of the control�

The constraint is adjoined to the Hamiltonian�



Euler-Lagrange Equations Including 
Equality Constraint �
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��[x(t f )]
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�
= 0

c x(t),u(t)[ ] � 0  in (to, t f )
dim(x) = dim(��) = n �1
dim F( ) = n � n
dim G( ) = n � m
dim(u) = m �1
dim(c) = dim(µµ) = r �1, r � m

No Optimization When r = m�
�� �<;A?<9�2;A6?29F�@=206K21�/F�0<;@A?.6;A�

�� m unknowns, m equations�

µµ = �
�c
�u
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�
�
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c x(t),u(t)[ ] � 0� u(t) = fcn x(t[ ]

�c
�u

�
��

�
��

 is square and non-singular

�� Constraint Lagrange multiplier is irrelevant but can be expressed�
�� from dH/du = 0,�

Example
c = Ax t( ) +Bu t( ) = 0; dim(x) = n �1; dim(c) = dim(u) = m �1

dim(A) = m � n; dim(B) = m �m
u t( ) = �B�1Ax t( )



No Optimization When r = m�

 

c x(t),u(t)[ ]� 0 =
0 = �V = Tmax�T � CDo

+ �CL
2( ) 12 �V

2S�
�

�
��
m � gsin�

0 = �� = 1
V

CL�
� 1
2
�V 2S	
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� u(t) = fcn x(t[ ]

 

MAINTAIN CONSTANT VELOCITY AND FLIGHT PATH ANGLE�

V 0( ) =Vdesired
� 0( ) = � desired

Effect of Constraint Dimensionality: 
r < m�

 

c x(t),u(t)[ ]� 0 = �� = 1
V t( )

CL�
� 1
2
�V 2 t( )S�

��
�
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m
� gcos� t( )
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MINIMIZE FUEL AND CONTROL USE WHILE MAINTAINING 
CONSTANT FLIGHT PATH ANGLE�

 
min
u(t )

J = q �m2 + r1u1
2 + r2u2

2( )
to

t f

� dt

� 0( ) = � desired



Effect of Constraint 
Dimensionality: r < m�

dim(x) = n �1
dim(u) = m �1
dim(c) = r �1

�c
�u

�
��

�
��  is not square when r < m

� �c
�u

�
��

�
��  is not strictly invertible

�� Three approaches to constrained 
optimization�
�� Algebraic solution for r control variables using 

an invertible subset of the constraint�
�� Pseudoinverse of control effect�
�� ��Soft�� constraint�

Effect of Constraint 
Dimensionality: r < m�

dim(u) = m �1
dim(c) = r �1

Algebraic solution for r control variables using 
an invertible subset of the constraint�

Example1
dim(x) = n �1; dim(Ar ) = r � n

dim(u) = m �1; dim(ur ) = r �1; dim(Br ) = r � r
c = Arx t( ) +Brur t( ) = 0; det(Br ) � 0

ur t( ) = �Br
�1Ax t( )

Example 2
dim(u) = m �1; dim(ur ) = r �1; dim(B1) = r � r

c = B1 B2�
�

�
	

ur
um�r

�

�
�
�

�

	
�
�
= B1ur +B2um�r = 0; det(B1) � 0

ur t( ) = �B1
�1B2um�r t( )



Second Approach: Satisfy Constraint 
Using Left Pseudoinverse: r < m�

µµL = �
�c
�u
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Lagrange multiplier�

�c
�u
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 is the left pseudoinverse  of control sensitivity

dim �c
�u

�
��

	
�

T�

�
�

�
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L

= r �m

Pseudoinverse of Matrix�
y = Ax dim(x) = r �1

dim(y) = m �1

r = m, A is square and non-singular�

x = A�1y

r � m, A is not square�
Use pseudoninverse of A�

x = A#y = A†y Maximum rank of A is r or m, 
whichever is smaller�

r �1( ) = r � m( ) m �1( ) = r � r( ) r �1( )

m �1( ) = m � r( ) r �1( )

r �1( ) = r � m( ) m �1( )

See http://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse�



Left Pseudoinverse�

r < m, Left pseudoinverse is appropriate�

Averaging 
solution�

Maximum rank of A is r or m, 
whichever is smaller�

dim ATA( ) = r � r
dim AAT( ) = m � m

Ax = y
ATAx = ATy

 

x = ATA( )�1ATy

AL � ATA( )�1AT

x = ALy

dim(x) = r �1
dim(y) = m �1

r �1( ) = r � m( ) m �1( )

Right Pseudoinverse�

r > m, Right pseudoinverse is appropriate�

Minimum Euclidean 
error norm solution�

Ax = y = Iy

Ax = AAT( ) AAT( )�1 y
= Iy

 

Ax = A AT AAT( )�1 y�
�

�
�

x = AT AAT( )�1 y
AR � AT AAT( )�1

x = ARy

dim ATA( ) = r � r
dim AAT( ) = m � m

m �1( ) = m � r( ) r �1( )

dim(x) = r �1
dim(y) = m �1



Left Pseudoinverse Example�
Ax = y, r < m

x = ATA( )�1ATy
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= 1
10

20( ) = 2
Unique solution

Right Pseudoinverse Example�
Ax = y, r > m

x = AT AAT( )�1 y

Ax = y; 1 3�� 	�
x1
x2
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At least two solutions

x1

x2

�

�
�
�

�

�
�
�
= 2

4
�

�
�

�

�
�  satisfies the equation, but x 2 = 20

x1

x2

�

�
�
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�

�
�
�
= 1.4

4.2
�

�
�

�

�
�  and x 2 = 19.6

Minimum - norm solution



Necessary Conditions Use Left 
Pseudoinverse for r < m�

Optimality conditions�
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c x(t),u(t)[ ] � 0

Third Approach: Penalty Function 
Provides ��Soft�� State-Control 

Equality Constraint: r < m�

 L � Loriginal + �cTc

�Lorig
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+ 2�cT �c
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Euler-Lagrange equations are adjusted accordingly�

� :   Scalar penalty weight



Equality Constraint on State Alone�

Hamiltonian�
 
J1 =� x(t f )�� �� + L + ��1

T (t) f � �x(t)[ ] + µµTc{ }
to

t f

� dt

 H � L + ��1
T f + µµTc

c x(t)[ ] � 0  in (to, t f )

Constraint is insensitive to control 
=2?AB?/.A6<;@�A<�K?@A�<?12?�

�c = �c
�x

�
��

�
��
�x + �c

�u
�
��

�
��
�u = �c

�x
�
��

�
��
�x

0�

Example of Equality Constraint 
on State Alone�

c x(t),u(t)[ ] = c x(t)[ ] = 0 = h t( )� hdesired

 
min
u(t )

J = q �m2 + r1u1
2 + r2u2

2( )
to

t f

� dt

MINIMIZE FUEL AND CONTROL USE WHILE MAINTAINING 
CONSTANT ALTITUDE�



Introduce Time-Derivative 
of Equality Constraint�

Equality constraint has no effect on optimality 
condition �

�H
�u
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Solution: Incorporate time-derivative of c[x(t)] 
in optimization�

Introduce Time-Derivative 
of Equality Constraint�

�2K;2�c[x(t)] as the zeroth-order equality constraint�

 c x(t)[ ] � c(0) x(t)[ ] � 0
Compute K?@A�<?12?�2>B.96AF�0<;@A?.6;A�

 

dc(0) x(t)[ ]
dt

=
�c(0) x(t)[ ]

�t
+
�c(0) x(t)[ ]

�x
f x(t),u(t)[ ]

� c(1) x(t),u(t)[ ] = 0



Time-Derivative of 
Equality Constraint�

Optimality condition now includes 
derivative of equality constraint�

�H
�u
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Subject to�
c(0) x(to )[ ] � 0 or c(0) x(t f )�� �� � 0

�� )6A5�2>B.96AF�0<;@A?.6;A�@.A6@K21�.A�/246;;6;4�<?�2;1�<3�
trajectory, c(1) = 0�.@@B?2@�A5.A�0<;@A?.6;A�6@�@.A6@K21�A5?<B45<BA�

�� If �c(1)/�u = 0, differentiate again, and again, …�

State Equality Constraint Example�

 c x(t)[ ]� c 0( ) x(t)[ ] = 0 = h t( )� hdesired
No control in the constraint; differentiate�

Still no control in the constraint; differentiate again…�

 

dc(0) x(t)[ ]
dt

=
�c(0) x(t)[ ]

�t
+
�c(0) x(t)[ ]

�x
f x(t),u(t)[ ]

� c(1) x(t)[ ] = 0 = �h t( ) =V t( )sin� t( )



State Equality Constraint Example�
Still no control in the constraint; differentiate again�

 

dc(1) x(t)[ ]
dt

=
�c(1) x(t)[ ]

�t
+
�c(1) x(t)[ ]

�x
f x(t),u(t)[ ]

� c(2) x(t)[ ] = 0 = ��h t( ) = dV
dt

t( )sin� t( ) +V t( ) d sin� t( )� ��
dt

= TmaxSL e��h( )�T �CD
1
2
�V 2S�


	
�
�� m � gsin��

�
�
��
sin� t( )

+cos� t( ) CL�
� 1
2
�V 2S�


	
�
�� m � gcos��

�
�
��

State Equality Constraint Example�

c 0( ) x(t0 )[ ] = 0 � h t0( ) = hdesired
c 1( ) x(t0 )[ ] = 0 �� t0( ) = 0

�� Control appears in the 2nd-order equality constraint�

c(2) x(t),u t( )
� �� = 0

= TmaxSL e��h( )�T �CD �( ) 1
2
� h( )V 2 t( )S�

	�

�� m t( )� gsin� t( )


��
�
��
sin� t( )

+cos� t( ) CL�
� 1
2
� h( )V 2 t( )S�

	�

�� m t( )� gcos� t( )


��
�
��

�� 0th- and 1st-order 
0<;@A?.6;A@�@.A6@K21�.A�
some point on the 
trajectory (e.g., t0)�

 H � L + ��1
T f + µµTc 2( )



Minimization with 
Inequality Constraints�

“Hard” Inequality Constraints�



Inequality Constraints�

Inequality Constraints�



Inequality Constraints�

“Soft” Control Inequality Constraint�

 L � Loriginal + �cTc � :   Scalar penalty weight

c u(t)[ ] =
u � umax( )2

0
u � umin( )2

, u � umax
, umin < u < umax
, u � umin

�

�
��

�
�
�

Scalar Example�



Numerical 
Optimization�

Numerical Optimization Methods�



Parametric 
Optimization�

�<;A?<9�@=206K21�/F�.�=.?.:2A2?�C20A<?� k�
No adjoint equations�

 

min
u(t )

J = � x(t f )�� �� + L x(t),u(t)[ ]
to

t f

� dt

subject to
�x(t) = f[x(t),u(t)] , x(to ) given

 

u(t) = k

u(t) = k0 + k1t + k2t
2 +�, k = k0 k1 � km�

�
�
�
T

u(t) = k

u(t) = k0 + k1t + k2t
2 +�, k = k0 k1 � km�

�
�
�

u(t) = k0 + k1 sin
�t

t f � t0

�

��
�


	
+ k2 cos

�t
t f � t0

�

��
�


	
, k = k0 k1 k2�

�
�
�

Examples�

Parametric Optimization�

+�  202@@.?F�.;1�@B3K062;A�0<;16A6<;@�
for a minimum�

+� '@2�@A.A60�@2.?05�.94<?6A5:�A<�K;1�
minimizing control parameter, k�

 

min
u(t )

J = � x(t f )�� �� + L x(t),u(t)[ ]
to

t f

� dt

subject to
�x(t) = f[x(t),u(t)] , x(to ) given

�J
�k

= 0

� 2J
�k2

> 0



Parametric 
Optimization 

Example�
 

min
u(t )

J = � x(t f )�� �� + L x(t),u(t)[ ]
to

t f

� dt

subject to
�x(t) = f[x(t),u(t)] , x(to ) given

a =
k0
k1
k2

�

�

�
�
�

�

�

�
�
�

� J
�k

= 0

� 2 J
�k2

> 0
 

�V = Tmax �CD
1
2
�V 2S�

��

�� m � gsin�

�� = 1
V

CL k0 + k1t + k2t
2( ) 12 �V

2S�
	�

�
��
m � gcos�


�
�

�
�
�

�h =V sin�
�r =V cos�
�m = � SFC( ) T( )

 
u t( ) � k0 + k1t + k2t

2( )

Legendre Polynomials�

Solutions to Legendre’s differential equation�



Legendre Polynomials�
P0 x( ) = 1
P1 x( ) = x

P2 x( ) = 1
2
3x2 �1( )

P3 x( ) = 1
2
5x3 � 3x( )

P4 x( ) = 1
8
35x4 � 30x2 + 3( )

P5 x( ) = 1
8
63x5 � 70x3 +15x( )

Polynomials can be generated 
by Rodriques’s formula�

Pn x( ) = 1
2n n!

dn

dxn
x2 �1( )n�

�
�
�

Optimizing Control: �
Find minimizing values of kn�

 

u x( ) = k0P0 x( ) + k1P1 x( ) + k2P2 x( )
+k3P3 x( ) + k4P4 x( ) + k5P5 x( ) +�

 
x � t

t f � to

Control History Optimized with 
Legendre Polynomials Could be 

expressed as a Simple Power Series�
P0 x( ) = 1
P1 x( ) = x

P2 x( ) = 1
2
3x2 �1( )

P3 x( ) = 1
2
5x3 � 3x( )

P4 x( ) = 1
8
35x4 � 30x2 + 3( )

P5 x( ) = 1
8
63x5 � 70x3 +15x( )

 

u * x( ) = k0*P0 x( ) + k1*P1 x( ) + k2*P2 x( )
+k3

*P3 x( ) + k4*P4 x( ) + k5*P5 x( ) +�

 

u * x( ) = a0* + a1*x + a2*x2

+a3
*x3 + a4

*x4 + a5
*x5 +�

 

a0
* = k0

* � k2
* 1
2

�
��

�
�� + k4

* 3
8

�
��

�
�� +�

a1
* = k1

* � k3
* 3
2

�
��

�
�� + k5

* 15
8

�
��

�
�� +�

a2
* = k2

* 3
2

�
��

�
�� � k4

* 30
8

�
��

�
�� +�

�



Parametric Optimization: 
Collocation�

+� Admissible controls occur at 
discrete times, k�

+� Cost and dynamic constraint are 
discretized�

+� “Pseudospectral” Optimal Control: 
State and adjoint points may be 
connected by basis functions, e.g.,  
Legendre polynomials�

+� Continuous solution approached as 
time interval decreased�

min
uk

J = � xk f�� �� + L xk ,uk[ ]
k=0

k f �1

�
subject to
xk+1 = fk[xk ,uk ] , x0 given

http://en.wikipedia.org/wiki/Legendre_polynomials�

http://en.wikipedia.org/wiki/Collocation_method�

http://en.wikipedia.org/wiki/Pseudospectral_optimal_control�

Penalty Function Method�
Balakrishnan��s ��Epsilon�� Technique�

 
min

wrt u(t ),x(t )
J = � x(t f ),t f�� �� + L x(t),u(t),t[ ] + 1

�
�
��


��
f x(t),u(t),t[ ]� �x(t){ }T 	{ }( )	



�

�
�
�
dt

to

t f

�

+� No integration of the dynamic equation�
+� Parametric optimization of the state and control history�

+� Augment the integral cost function by 
the dynamic equation error�

x(t) � x(kx ,t)
u(t) � u(ku ,t)

dim(kx ) � n
dim(ku ) � m

1 / �  is the penalty for not satisfying the dynamic constraint



Penalty Function 
Method�
+� Choose reasonable starting values 

of state and control parameters�
–� e.g., state and control satisfy 

boundary conditions�
+� Evaluate cost function�

Update state and control parameters (e.g., steepest descent)�

kxi+1 = kxi ��
�J
�kx kx =kxi

�

�
�
�

�

	
�
�

T

kui+1 = kui ��
�J
�ku ku =kui

�

�
�
�

�

	
�
�

T

 
J0 = � x0 (t f )�� �� + L x0 (t),u (t)[ ] + 1

�
�
��


��
f x0 (t),u0 (t)[ ]� �x0 (t){ }T 	{ }( )	



�

�
�
�
dt

to

t f

�

xi+1(t) � x(kxi+1 ,t)
ui+1(t) � u(kui+1 ,t)

Re-evaluate cost with higher penalty��
Repeat to convergence�

 Ji � Ji+1 � J*, � � 0, f x(t),u(t),t[ ]� �x(t)

Taylor, Smith Iliff, 1969�

Neighboring Extremal 
Method�
��Shooting Method��: Integrate both state 

and adjoint vector forward in time�

with

uk+1(t) defined by �H[xk (t),uk (t),�� k+1(t),t]
�u

= Luk (t) + �� k+1
T t( )Gk (t)�� �� = 0

...  but how do you know the initial value of the adjoint vector?�

 

��� k+1(t) = �
�L
�x k

t( ) + �� k+1
T t( )Fk t( )�

�
�

�

	
�

T

, �� k (t0 )  given

 

�xk+1(t) = f[xk+1(t),uk (t)],
x0 (t0 ) given, initial guess for u0 (t)



Neighboring Extremal 
Method�

All trajectories are optimal (i.e., ��extremals��) 
for some cost function because �

�H
�u

= Hu = Lu + ��TG�� �� = 0

Integrating state equation computes a value for�

x(t f ) = x(t0 )+ f[xk+1(t),uk (t)]
t0

t f

� ; � x(t f )�� 	
�
�� x(t f )�� 	


�x
= ���� t f( )

Use a learning rule to estimate the initial value of the adjoint vector, e.g.,�

�� k+1
T t0( ) = �� k

T t0( ) �� �� k
T t f( ) � ��desired�� ��

T

� x t f( )�� ��

Gradient-Based 
Methods�



Gradient-Based Search 
Algorithms�

Gradient-Based Search Algorithms�

uk+1(t) = uk (t) �
� 2H
�u2

t( )�

�
�

�

�
�
k

�1
�H
�u

t( )�
��

�
��k

T

uk+1(t) = uk (t) � �k
�H
�u

t( )�
��

�
	�k

T

Steepest Descent�

Newton Raphson�

Generalized Direct Search�

uk+1(t) = uk (t) �Kk
�H
�u

t( )�
��

�
��k

T



Numerical Optimization Using 
Steepest-Descent Algorithm�

Iterative bidirectional procedure�

 �xk (t) = f[xk (t),uk�1(t)] , x(to ) given

Use educated guess for u0�(��#"�1&'(��(�&�(�#"�

Forward solution to find the state, x t( )
Backward solution to find the adjoint vector, �� t( )

Steepest-descent adjustment of control history, u t( )

Numerical Optimization Using 
Steepest-Descent Algorithm�

 

��� k (t) = �
�H
�x

�
��

�
�k

T

= � Lx (t) + ��T t( )F(t)�� �k
T
,

��(t f ) =
��[x(t f )]

�x
�
	



�
�
�

T

E � L #2 and #1[ ]

Use xk-1(t) and uk-1(t) from previous step�



Numerical Optimization Using 
Steepest-Descent Algorithm�

uk+1(t) = uk (t)� �
�H
�u u(t )=uk (t )

�

�
�

�



	

T

= uk (t)� � Lu + ��T t( )G(t)�� �
k
T

�H
�u

�
��

	
�
 k

= Lu(t) + ��T t( )G(t)�� �k E � L #3[ ]

Use x t( ),  �� t( ),  and u t( )  from previous step

Finding the Best Steepest-Descent Gain�
J0k

uk t( ), 0 < t < t f�� �	 :  Best solution from the previous iteration

Calculate the gradient, �Hk

�u
t( ),  in 0 < t < t f

J1k
uk t( )� � k

�Hk

�u
t( ), 0 < t < t f

�
��

�
	�

:   Steepest - descent calculation of cost (1)

J2k
uk t( )� 2� k

�Hk

�u
t( ), 0 < t < t f

�
��

�
	�

:   Steepest - descent calculation of cost (2)

J �( ) = a0 + a1� + a2�
2

 

J0k

J1k

J2k

�

�

�
�
�
�

�

	

�
�
�
�

=

a0 + a1 0( ) + a2 0( )2

a0 + a1 � k( ) + a2 � k( )2

a0 + a1 2� k( ) + a2 2� k( )2

�

�

�
�
�
�
�

�

	

�
�
�
�
�

=

1 0 0
1 � k( ) � k( )2

1 2� k( ) 2� k( )

�

�

�
�
�
�

�

	

�
�
�
�

a0

a1

a2

�

�

�
�
�

�

	

�
�
�

Solve for a0, a1,  and a2

Find �* that minimizes J �( )

Jk+1 uk+1 t( ) = uk t( )� � *k
�Hk

�u
t( ), 0 < t < t f

�
��

�
	�

:   Best steepest - descent calculation of cost

Go to next iteration



Steepest-Descent Algorithm for 
Problem with Terminal Constraint�

Chose uk+1(t) such that�

�HC

�u
=

�H0

�u
�

a
b

�
��

	
�

�H1

�u
�
��

�
�
= 0

uk+1(t) = uk (t)� �
�HC

�u u(t )=uk (t )

�

�
�

	

�



T

= uk (t)� � Lu
T +GT (t)��0 t( )�� 	�k � 1

bk
GT

k (t)��1 t( )� k x(t f )�� 	�

min
u(t )

J = � x(t f )�� �� + L x(t),u(t)[ ]
to

t f

� dt � x(t f )�� �� � 0  (scalar)

see Lecture 3 for a 
and b���1"�(�#"'�

Zero Gradient Algorithm for 
Quadratic Control Cost�

min
u(t )

J = � x(t f )�� �	 + L x(t)[ ]+ 1
2
uT t( )Ru t( )�

�
�



�
�to

t f

� dt

�H
�u

t( ) = Hu t( ) = uT t( )R + ��T t( )G t( )�� �� � 0

H x(t),u(t),��(t)[ ] = L x(t)[ ]+ 1
2
uT t( )Ru t( )�

�
�

�
�
�
+ ��T (t)f x(t),u(t)[ ]

Optimality condition: �



Zero Gradient Algorithm for 
Quadratic Control Cost�

Chose uk+1(t) such that�

 

uk+1(t) = 1� �( )uk (t)� � R�1Gk
T t( )�� k t( )�� ��

� �  Relaxation parameter < 1

�H
�u

t( ) = Hu t( ) = uT t( )R + ��T t( )G t( )�� �� � 0

u*T t( )R = ��� ��T t( )G* t( )
u* t( ) = �R�1G*T t( )�� �� t( )

Optimal control, u*(t) �

But Gk t( )  and �� k t( )  are sub-optimal before convergence,
and optimal control cannot be computed in single step

�

Stopping Conditions for 
Numerical Optimization�

�� Computed total cost, J, reaches a 
theoretical minimum, e.g., zero�

�� Convergence of J is essentially 
complete�

�� Control gradient, Hu(t), is 
essentially zero throughout [to, tf]�

�� Terminal cost/constraint is 
@.A6@K21��.;1�6;A24?.9�0<@A�6@�
“good enough”�

Jk+1 > Jk � �

Jk+1 = 0 + �

Huk+1
t( ) = 0 ± �  in to,t f�� ��

or

Huk+1

T t( )Huk+1
t( )dt

to

t f

� = 0 + �

�k+1 t f( ) = 0 + � , or � k+1 t f( ) = 0 ± � , and L x t( ),u t( )�� �	dt < �
to

t f

�



Optimal Treatment of 
an Infection�

Model of Infection and 
Immune Response�

�� x1 =  Concentration of a 
pathogen, which displays 
antigen�

�� x2 = Concentration of 
plasma cells, which are 
carriers and producers of 
antibodies�

�� x3 = Concentration of 
antibodies, which 
recognize antigen and kill 
pathogen�

�� x4 = Relative characteristic 
of a damaged organ [0 = 
healthy, 1 = dead]�



Infection 
Dynamics�

 

�x1 = (a11 � a12x3)x1 + b1u1 + w1
�x2 = a21(x4 )a22x1x3 � a23(x2 � x2*) + b2u2 + w2
�x3 = a31x2 � (a32 + a33x1)x3 + b3u3 + w3
�x4 = a41x1 � a42x4 + b4u4 + w4

Fourth-order ordinary 
differential equation, including 

effects of therapy (control)�

 

Uncontrolled Response to Infection�



Cost Function to be Minimized by 
Optimal Therapy�

J =
1
2
p11x1 f

2 + p44x4 f
2( ) + 12 q11x1

2 + q44x4
2 + ru2( )dt

to

t f

�

+� &?.12<33@�/2AD22;�K;.9�C.9B2@��6;A24?.9�C.9B2@�<C2?�.�
KE21�A6:2�6;A2?C.9��@A.A2��.;1�0<;A?<9�

+� Cost function includes weighted square values of�
–� Final concentration of the pathogen�
–� Final health of the damaged organ (0 is good, 1 is bad)�
–� Integral of pathogen concentration�
–� Integral health of the damaged organ (0 is good, 1 is bad)�
–� Integral of drug usage�

+� �?B4�0<@A�:.F�?2L20A�=5F@6<9<460.9�0<@A��@612�23320A@��
<?�K;.;06.9�0<@A�

Examples of 
Optimal Therapy�

�� u1 = Pathogen killer�
�� u2 = Plasma cell enhancer�
�� u3 = Antibody enhancer�
�� u4 = Organ health enhancer�

Unit cost weights�



Effects of Increased Drug ��Cost���
r = 100�

Next Time:�
Minimum-Time and -Fuel 

Problems�
�

Reading�
OCE: Section 3.5, 3.6�



Supplemental Material�

Examples of Equality Constraints �

c x(t),u(t)[ ] � 0  
Pitch Moment = 0 = fcn(Mach Number, Stabilator Trim Angle)

c u(t)[ ] � 0  
Stabilator Trim Angle – constant = 0

c x(t)[ ] � 0  
Altitude  – constant = 0



Minimum-Error-Norm 
Solution�

�� Euclidean error norm for linear equation �

Ax � y 2
2 = Ax � y[ ]T Ax � y[ ]

2 Ax � y[ ]T = 2 A AT AAT( )�1 y�
�

�
� � y{ }T = 2 AAT( ) AAT( )�1 y � y{ }T

= 2 y � y[ ]T = 0

dim(x) = r �1
dim(y) = m �1
r > m

�� Necessary condition for minimum error �
�
�x
Ax � y 2

2 = 2 Ax � y[ ]T = 0

�� Express x as right pseudoinverse �

�� Therefore, x is the minimizing solution, as 
long as AAT is non-singular �


