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Neighboring Trajectories�
$� Nominal (or reference) trajectory and control history�

xN (t), uN (t),wN (t){ } for t in [to,t f ]

$� Trajectory perturbed by�
–� Small initial condition variation�
–� Small control variation�
–� Small disturbance variation�

x(t), u(t),w(t){ } for t in [to,t f ]

= xN (t) + �x(t), uN (t) + �u(t),wN (t) + �w(t){ }

 

x : dynamic state
u : control input
w : disturbance input
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Both Paths Satisfy the 
Same Dynamic Equations�

$� Neighboring-trajectory dynamic model is the same as the 
nominal dynamic model�

 

�xN (t) = f[xN (t),uN (t),wN (t)], xN to( )   given

�x(t) = f[x(t),u(t),w(t)], x to( )   given

 

�x(to) = x(to) � xN (to)
�x(t) = x(t) � xN (t)
���x (t) = ��x (t) � ��x N (t)

 

�xN (t) = f[xN (t),uN (t),wN (t),t]
�x(t) = �xN (t)+ ��x(t) = f[xN (t)+ �x(t),uN (t)+ �u(t),wN (t)+ �w(t),t]

 

�u(t) = u(t) �uN (t)
�w(t) = w(t) �wN (t) 3�

Approximate Neighboring 
Trajectory as a Linear Perturbation 

to the Nominal Trajectory�

 

�x(t) = �xN (t)+ ��x(t) �

f[xN (t),uN (t),wN (t),t]+ � f
�x

�x(t)+ � f
�u

�u(t)+ � f
�w

�w(t),

x(to ) = xN (to )+ �x(to ) given

$� Nominal nonlinear dynamic equation plus 
linear perturbation equation�
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Linearized Equation Approximates 
Perturbation Dynamics�

$� Solve for the nominal and perturbation trajectories separately�

$� Jacobian matrices of the linear model are evaluated along the 
nominal trajectory�

 �xN (t) = f[xN (t),uN (t),wN (t),t], xN to( )   given

 
��x(t) � �f

�x
t( )�x(t) + �f

�u
t( )�u(t) + �f

�w
t( )�w(t), �x to( )   given

 

�f
�x x=xN (t )

u=uN (t )
w=wN (t )

� F(t) ; �f
�u x=xN (t )

u=uN (t )
w=wN (t )

� G(t) ; �f
�w x=xN (t )

u=uN (t )
w=wN (t )

� L(t)

 ��x(t) = F(t)�x(t) +G(t)�u(t) + L(t)�w(t), �x to( )   given

5�

Linearization 
Examples�
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Cubic Springs�

�9<-/�3=�+�898638/+<�0?8->398�90�./F/->398�

f x( ) = �k1x ± k2x
3

moment �( ) � �k1� + k2�
3

Example:  Expand gsin�  
in a power series
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Stiffening Cubic Spring Example�
2nd-order nonlinear dynamic model�

 

�x1(t) = f1 x(t)[ ] = x2 (t)
�x2 (t) = f2 x(t)[ ] = �10x1(t)�10x1

3(t)� x2 (t)
Integrate equations to produce nominal path�

x1(0)
x2 (0)

�

�
�
�

�

�
�
�
�

f1N x(t)[ ]
f2N x(t)[ ]

�

�

�
�

�

�

�
�
dt�

0

t f

�
x1N (t)

x2N (t)

�

�
�
�

�

�
�
�

in 0,t f�� ��

Evaluate partial derivatives of the Jacobian matrices�

� f1
�x1

= 0; � f1
�x2

= 1

� f2
�x1

= �10 � 30x1N
2 (t); � f2

�x2
= �1

� f1
�u = 0;

� f1
�w = 0

� f2
�u = 0;

� f2
�w = 0
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Nominal and Perturbation 
Dynamic Equations�

 

�x1N (t) = x2N (t)

�x2N (t) = �10x1N (t)�10x1N
3(t)� x2N (t)

 

��x1(t)
��x2 (t)

�

�
�
�

�

�
�
�
=

0 1
� 10 + 30x1N

2 (t)( ) �1

�

�
�
�

�

�
�
�

�x1(t)
�x2 (t)

�

�
�
�

�

�
�
�

x1N (0)

x2N (0)

�

�
�
�

�

�
�
�
= 0
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�
�

�

�
�;

�x1(0)
�x2 (0)

�

�
�
�

�

�
�
�
= 0

1
�

�
�

�

�
�

Nonlinear Equation�

Local Linearization 
of Nonlinear Model�

Initial Conditions 
for Nonlinear and 
Linear Models�
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Comparison of Approximate and Exact Solutions�

xN (t)
�x(t)
xN (t) + �x(t)
x(t)

x2N (0) = 9
�x2 (0) = 1
x2N (t) + �x2 (t) = 10
x2 (t) = 10

 

�xN (t)
��x(t)
�xN (t) + ��x(t)
�x(t)
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Euler-Lagrange Equations 
for Minimizing Variational 

Cost Function �

11�

Expand Optimal Control 
Function�

 

J x * (to ) + �x(to )[ ], x * (t f ) + �x(t f )�� ��{ } �
J * x * (to ),x * (t f )�� �� + �J �x(to ),�x(t f )�� �� + �2J �x(to ),�x(t f )�� ��

Nominal optimized cost, plus nonlinear dynamic constraint�

Expand optimized cost function to second degree�

 

J * x * (to ),x * (t f )�� �� = � x * (t f )�� �� + L x * (t),u * (t)[ ]
to

t f

� dt

subject to nonlinear dynamic equation
�x * (t) = f x * (t),u * (t)[ ], x(to ) = xo

= J * x * (to ),x * (t f )�� �� + �2J �x(to ),�x(t f )�� ��
because First Variation, �J �x(to ),�x(t f )�� �� = 0
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2nd Variation of the Cost Function�

Cost weighting matrices expressed as�

Objective: Given optimal nominal solution, minimize 2nd-
variational cost subject to linear dynamic constraint�

min
�u

�2J = 1
2
�xT (t f )�xx (t f )�x(t f )+

1
2

�xT (t) �uT (t)�
�

�


Lxx (t) Lxu(t)
Lux (t) Luu(t)

�

�
�
�

�


�
�

�x(t)
�u(t)

�

�
�
�

�


�
�to

t f


 dt
�
�
	

�	

�
�
	

�	

 

P(t f ) � �xx (t f ) =
�2�
�x2

(t f )

Q(t) M(t)
MT (t) R(t)

�

�
�
�

�

�
�
�
�

Lxx (t) Lxu(t)
Lux (t) Luu(t)

�

�
�
�

�

�
�
�

dim P(t f )�� �� = dim Q(t)[ ] = n � n
dim R(t)[ ] = m � m
dim M(t)[ ] = n � m

 

subject to perturbation dynamics
��x(t) = F(t)�x(t)+G(t)�u(t), �x(to ) = �xo
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2nd Variational Hamiltonian �

�2J =
1
2
�xT (t f )P(t f )�x(t f ) +

1
2

�xT (t) �uT (t)�
�



�

Q(t) M(t)
MT (t) R(t)

�

�
�
�




�
�
�

�x(t)
�u(t)

�

�
�
�




�
�
�
dt

to

t f

	
�
�
�

��


�
�

��

H �x(t),�u(t),��� t( )�� �� = L �x(t),�u(t)[ ] + ���T t( ) f �x(t),�u(t)[ ]
=
1
2

�xT (t)Q(t)�x(t) + 2�xT (t)M(t)�u(t) + �uT (t)R(t)�u(t)�� ��

+ ���T t( ) F(t)�x(t) +G(t)�u(t)[ ]

Variational Lagrangian plus adjoined dynamic constraint�

Variational cost function�

= 1
2
�xT (t f )P(t f )�x(t f )+

1
2

�xT (t)Q(t)�x(t)+ 2�xT (t)M(t)�u(t)+ �uT (t)R(t)�u(t)�� 	
dt
to

t f

�
�
�
�

��

�
�
�

�
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2nd Variational Euler-Lagrange 
Equations�

��� t f( ) = �xx (t f )�x(t f ) = P(t f )�x(t f )

Terminal condition, solution for adjoint vector, and 
optimality condition�

 
� ��� t( ) = �

�H �x(t),�u(t),��� t( )�� ��
��x

�
�



	



�



�


T

= �Q(t)�x(t) �M(t)�u(t) � FT (t)��� t( )

�H �x(t),�u(t),��� t( )�� ��
��u

�
�



	



�



�


T

=MT (t)�x(t) + R(t)�u(t) �GT (t)��� t( ) = 0

15�

Two-Point Boundary-Value Problem�

 ��x(t) = F(t)�x(t) +G(t)�u(t)

 �
��� t( ) = �Q(t)�x(t) �M(t)�u(t) � FT (t)��� t( )

��� t f( ) = P(t f )�x(t f )

�x(to ) = �xo

State Equation�

Adjoint Vector Equation�

16�



Use Control Law to Solve the Two-
Point Boundary-Value Problem�

�u(t) = �R�1(t) MT (t)�x(t) +GT (t)��� t( )�� ��

 

��x(t)
� ��� t( )

�

�
�
�

�


�
�
=

F(t) �G(t)R�1(t)MT (t)�� � �G(t)R�1(t)GT (t)

�Q(t) +M(t)R�1(t)MT (t)�� � � F(t) �G(t)R�1(t)MT (t)�� �
T

�
�



	


�
�



�


�x(t)
��� t( )

�

�
�
�

�


�
�

�x(to )

��� t f( )
�

�

�
�

�

�

�
�
=

�xo

Pf�x f

�

�
�
�

�

�
�
�

Perturbation state vector
Perturbation adjoint vector

From Hu = 0�

Substitute for control in system and adjoint equations�
Control law that feeds back state and adjoint vectors�

Adjoint relationship at end point�

17�

Use Control Law to Solve the Two-
Point Boundary-Value Problem�

Assume the adjoint relationship between state 
and control applies over the entire interval�

��� t( ) = P t( )�x t( )
Control law feeds back state alone�

 

�u(t) = �R�1(t) MT (t)�x(t)+GT (t)P t( )�x t( )�� ��
= �R�1(t) MT (t)+GT (t)P t( )�� ���x t( )
� �C(t)�x t( ) dim C( ) = m � n
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Linear-Quadratic (LQ) Optimal 
Control Gain Matrix�

$� Properties of feedback gain matrix�
–� Full state feedback (m x n)�
–� Time-varying matrix�

$� R, G, and M given�
$� Control weighting matrix, R�
$� State-control weighting matrix, M�
$� Control effect matrix, G�

$� P(t) remains to be determined�

�u(t) = �C(t)�x t( )

C(t) = R�1(t) GT (t)P t( ) +MT (t)�� ��

Optimal feedback gain matrix�

19�

Solution for the Adjoining 
Matrix, P(t)�

 �
��� t( ) = �P t( )�x t( ) + P t( )��x t( )

 
�P t( )�x t( ) = � ��� t( ) � P t( )��x t( )

Time-derivative of adjoint vector�

Rearrange�

 

�P t( )�x t( ) = �Q(t)+M(t)R�1(t)MT (t)�� ���x t( )� F(t)�G(t)R�1(t)MT (t)�� ��
T
��� t( )

�P t( ) F(t)�G(t)R�1(t)MT (t)�� ���x t( )�G(t)R�1(t)GT (t)��� t( ){ }

Recall coupled state/adjoint equation�

 

��x(t)
� ��� t( )

�

�
�
�

�


�
�
=

F(t) �G(t)R�1(t)MT (t)�� � �G(t)R�1(t)GT (t)

�Q(t) +M(t)R�1(t)MT (t)�� � � F(t) �G(t)R�1(t)MT (t)�� �
T

�
�



	


�
�



�


�x(t)
��� t( )

�

�
�
�

�


�
�

Substitute in adjoint matrix equation�
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Solution for the Adjoining 
Matrix, P(t)�

Substitute for adjoint vector�
��� t( ) = P t( )�x t( )

 

�P t( )�x t( ) = �Q(t)+M(t)R�1(t)MT (t)�� ���x t( )
� F(t)�G(t)R�1(t)MT (t)�� ��

T
P t( )�x t( )

�P t( ) F(t)�G(t)R�1(t)MT (t)�� ���x t( )�G(t)R�1(t)GT (t)P t( )�x t( ){ }
... and eliminate state vector�

21�

Matrix Riccati Equation for P(t)�

 

�P t( ) = �Q(t)+M(t)R�1(t)MT (t)�� �� � F(t)�G(t)R�1(t)MT (t)�� ��
T
P t( )

�P t( ) F(t)�G(t)R�1(t)MT (t)�� �� + P t( )G(t)R�1(t)GT (t)P t( )
P t f( ) = �xx t f( )

The result is a nonlinear, ordinary differential 
equation for P(t), with terminal boundary conditions�

Time-varying or time-invariant?�

22�



Characteristics of the Adjoining 
( Riccati) Matrix, P(t)�

$� P(tf) is symmetric, n x n, and typically positive semi-
./E83>/�

$� Matrix Riccati equation is symmetric�
$� Therefore, P(t��3=�=C77/><3-�+8.�:9=3>3@/�=/73�./E83>/�

throughout�
$� Once P(t) has been determined, optimal feedback 

control gain matrix, C(t) can be calculated�

23�

Neighboring-Optimal (LQ) Feedback 
Control Law �

�u(t) = �R�1(t) MT (t) +GT (t)P t( )�� ���x t( ) = �C(t)�x t( )
Full state is fed back to all available controls�

u(t) = u * (t) �C(t)�x t( ) = u * (t) �C(t) x t( ) � x * t( )�� ��

Nominal control history plus feedback correction�

24�



Example of Neighboring-
Optimal Control: Improved 
Infection Treatment via 

Feedback�

25�

Natural Response to Pathogen 
Assault (No Therapy)�

26�



 

J = 1
2
s11x1 f

2 + s44x4 f

2( ) + 1
2

q11x1
2 + q44x4

2 + ru2( )dt
to

t f

�

Tradeoff Between Rate of Killing 
Pathogen, Preservation of Organ 

Health, and Drug Use�

Optimal 
Open-Loop 
Control�

27�

u(t) = u * (t) �C(t)�x(t)
= u * (t) �C(t)[x(t) � x * (t)]

50% Increased Initial Infection and Scalar 
Neighboring-Optimal Control (u1)�

28�



Linear-Quadratic Control of 
Time-Invariant Systems�

29�

Time-Varying System with Linear-
Quadratic (LQ) Feedback Control �

Continuous-time linear dynamic system�

LQ optimal control law�

Linear dynamic system with LQ feedback control�

 ��x(t) = F(t)�x(t) +G(t)�u(t)

 �u(t) = �R�1(t) MT (t)+GT (t)P t( )�� ���x t( ) � �C(t)�x t( )

 ��x(t) = F(t)�x(t) +G(t)�u(t)

= F(t)�x(t)+G(t) �C(t)�x t( )�� ��
= F(t)�G(t)C(t)[ ]�x(t)

30�



Time-Invariant Linear System with 
Linear-Quadratic (LQ) Feedback Control �

LTI dynamic system�

 ��x(t) = F�x(t) +G�u(t)
Time-invariant cost function�

Riccati ordinary differential equation�

 

�P t( ) = �Q+MR�1MT�� �� � F �GR�1MT�� ��
T
P t( )� P t( ) F �GR�1MT�� ��

+P t( )GR�1GTP t( ) , P t f( ) = �xx t f( )

�2J =
1
2
�xT (t f )P(t f )�x(t f ) +

1
2

�xT (t) �uT (t)�
�



�

Q M
MT R

�

�
�
�




�
�
�

�x(t)
�u(t)

�

�
�
�




�
�
�
dt

to

t f

	
�
�
�

��


�
�

��
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Linear, Time-Invariant (LTI) System with 
Time-Varying LQ Feedback Control �

Control gain matrix varies over time�

Linear dynamic system with time-
varying LQ feedback control�

 �u(t) = �R�1 MT +GTP t( )�� ���x t( ) � �C(t)�x t( )

 

��x(t) = F�x(t)+G �C(t)�x t( )�� ��
= F �GC(t)[ ]�x(t) = Fclosed�loop t( )�x(t)

32�



Example: LQ Optimal Control 
of a First-Order System�

 ��x = f�x + g�u

�u = �r�1 gp t( )�� ���x t( )

= �
gp t( )
r

�x
 

�p t( ) = �q � 2 fp t( ) + g
2p2 t( )
r

p t f( ) = pf

�2J =
1
2
pf�x

2 (t f ) +
1
2

q�x2 + 0( )�x�u + r�u2( )dt
to

t f

�
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�p t( ) = �1+ 2p t( ) + p2 t( )
p t f( ) = 1

 ��x = ��x + �u; x 0( ) = 1

�u = � p t( )�x

 ��x = � 1+ p t( )�� ���x

Example: LQ Optimal Control of a 
Stable First-Order System�
f = �1; g = 1

q = r = 1

Control gain = p t( )

�xopen�loop t( )

�xclosed�loop t( )

p t( )

�u t( )

34�



�u = � p t( )�x

 ��x = 1� p t( )�� ���x

Example: LQ Optimal Control of 
an Unstable First-Order System�

f = 1; g = 1

Control gain = p t( )

 ��x = �x + �u; x 0( ) = 1

 

�p t( ) = �1� 2p t( ) + p2 t( )
p t f( ) = 1

�xopen�loop t( )

�xclosed�loop t( )

p t( )

�u t( )
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�p t( ) = �q + 2p t( ) + p2 t( ); q = 1 or 100

p t f( ) = 1
 ��x = ��x + �u + �w; x 0( ) = 0

�u = � p t( )�x  ��x = � 1+ p t( )�� ���x

Example: LQ Optimal Control, Stable First-Order 
System, ��White-Noise�� Disturbance�

q = 1� q = 100�Open-Loop Response�

Open- and Closed-Loop Responses�

�xopen�loop t( )

p t( )

�u t( )

�xopen�loop t( )

p t( )

�u t( )

36�



 

�p t( ) = �1+ 2p t( ) + p2 t( )
p t f( ) = 1 or 1000

 ��x = ��x + �u + �w; x 0( ) = 0

�u = � p t( )�x  ��x = � 1+ p t( )�� ���x

pf = 1� pf = 1000�Open-Loop Response�

Open- and Closed-Loop Responses�

�xopen�loop t( )

p t( )

�u t( )

�xopen�loop t( )

p t( )

�u t( )

37�

Example: LQ Optimal Control, Stable First-Order 
System, ��White-Noise�� Disturbance�

 

�p t( ) = �100 + 2p t( ) + p2 t( )
p t f( ) = 1 or 0

 ��x = ��x + �u + �w; x 0( ) = 0

�u = � p t( )�x  ��x = � 1+ p t( )�� ���x

pf = 1� pf = 0�
�xopen�loop t( )

�xopen�loop t( ), �xclosed�loop t( )

p t( )

�u t( )

�xopen�loop t( )

�xopen�loop t( ), �xclosed�loop t( )

p t( )

�u t( )

38�

Example: LQ Optimal Control, Stable First-Order 
System, ��White-Noise�� Disturbance�



Discrete-Time and Sampled-
Data Systems�

39�

Continuous-Time LTI System Model �

 

��x(t) = F�x(t)+G�u(t)+L�w(t)
�x(to ) given

�y(t) = Hx�x(t)+Hu�u(t)+Hw�w(t)

Continuous-time (��analog��) model is based 
on an ordinary differential equation�

Dynamic Process�

Observation Process�

40�



�x(tk+1) = ���x(tk )+ ���u(tk )+ ���w(tk )
�x(to ) given

�y(tk ) = Hx�x(tk )+Hu�u(tk )+Hw�w(tk )

Dynamic Process�

Observation Process�

Discrete-Time LTI System Model �
Discrete-time (��digital��) model is based 

on an ordinary difference equation�

41�

Digital Control Systems Use 
Sampled Data �

�xk = �x tk( ) = �x k�t( )

$� Periodic sequence�

Plant�

$� Sampler is an analog-to-digital (A/D) converter�
$� Reconstructor is a digital-to-analog (D/A) converter�

42�



Solution of a linear dynamic model �

 

��x(t) = F(t)�x(t)+G(t)�u(t)+L(t)�w(t), �x(to ) given

�x(t) = �x(to )+ F(� )�x(� )+G(� )�u(� )+L(� )�w(� )[ ]d�
to

t

�

$� ... has two parts�
–� Unforced (homogeneous) response to initial conditions�
–� Forced response to control and disturbance inputs�

Initial condition 
response�

Step input 
response�

System Response to Inputs 
and Initial Conditions�

43�

Unforced Response 
to Initial Conditions�

For a linear, time-varying (LTV) system, the state transition matrix 
propagates the state from to to t by a single multiplication�

�x(t) = �x(to ) + F(� )�x(� )[ ]d�
to

t

� = �� t,to( )�x(to )

Neglecting forcing functions�

For a linear, time-invariant (LTI) system�

�x(t) = �x(to )+ F�x(� )[ ]d�
to

t

�
= eF t�to( )�x(to ) = �� t � to( )�x(to ) 44�



State Transition Matrix is the 
Matrix Exponential�

eF t�to( ) = Matrix Exponential

= I+ F t � to( ) + 1
2!
F t � to( )�� ��

2
+ 1
3!
F t � to( )�� ��

3
+ ...

= �� t � to( ) = State Transition Matrix
See pages 79-84 of Optimal Control and Estimation for a 

description of how the State Transition Matrix is calculated for an LTV 
system, i.e., if F is a function of time, F(t)�

45�

Initial-Condition Response 
via State Transition�

�� = I+ F � t( ) + 1
2!
F � t( )�� ��

2

+ 1
3!
F � t( )�� ��

3
+ ...

 

�x(t1) = �� t1 � to( )�x(to )
�x(t2 ) = �� t2 � t1( )�x(t1)
�x(t3) = �� t3 � t2( )�x(t2 )
…   

 

�x(t1) = �� �t( )�x(to) = ���x(to)

�x(t2) = ���x(t1) = ��2�x(to)
�x(t3) = ���x(t2) = ��3�x(to)
…

Propagation of �x tk( )  in LTI system

State transition matrix is constant if 
tk � tk�1( ) = � t =  constant

46�



Response 
to Inputs�

Solution of the LTI model 
with piecewise-constant 

forcing functions �

�x(tk ) = �x(tk�1) + F�x(� ) +G�u(� ) + L�w(� )[ ]d�
tk�1

tk

�

Step Input: Discrete-
time solution is exact�

�x(tk ) = �� � t( )�x(tk�1)+�� � t( ) e�F � �tk�1( )�	 ��d�
tk�1

tk


 G�u(tk�1)+L�w(tk�1)[ ]
= ���x(tk�1)+ ���u(tk�1)+ ���w(tk�1)

47�

Discrete-Time LTI System 
Response to Step Input�

 

�x(t1) = ���x(to ) + ���u(to ) + ���w(to )
�x(t2 ) = ���x(t1) + ���u(t1) + ���w(t1)
�x(t3) = ���x(t2 ) + ���u(t2 ) + ���w(t2 )
�

�� = eF� t

�� = eF� t � I( )F�1G

�� = eF� t � I( )F�1L

Step Input: Discrete-time 
solution is exact�

Propagation of �x tk( )
with constant ��, ��, and ��

48�



As time interval becomes very small, 
discrete-time model approaches 

continuous-time model�

�� � t�0� ��� I + F�t( )
�� � t�0� ��� G�t
�� � t�0� ��� L�t

Relationship Between Continuous-
Time and Discrete-Time LTI Models �

�� = I + F �t( ) + 1
2!
F �t( )�� ��

2 +
1
3!
F �t( )�� ��

3 + ...

�� = eF� t � I( )F�1G = I + 1
2!
F �t( )�	 � +

1
3!
F �t( )�	 �

2 + ...�
��



��
G�t

�� = eF� t � I( )F�1L = I + 1
2!
F �t( )�	 � +

1
3!
F �t( )�	 �

2 + ...�
��



��
L�t

49�

Example: Equivalent Continuous-Time 
and Discrete-Time System Matrices�

F = �1.2794 �7.9856
1 �1.2709

�

�
�

�

�
�

G = �9.069
0

�

�
�

�

�
�

L = �7.9856
�1.2709

�

�
�

�

�
�

�� = 0.845 �0.6936
0.0869 0.8457

�

�
�

�



	

�� = �0.8404
�0.0414

�

�
�

�



	

�� = �0.6936
�0.1543

�

�
�

�



	

�� = 0.0823 �1.4751
0.1847 0.0839

�

�
�

�



	

�� = �2.4923
�0.6429

�

�
�

�



	

�� = �1.4751
�0.9161

�

�
�

�



	

Continuous-time 
(��analog��) system�

Discrete-time (��digital��) system�

Time interval 
has a large 

effect on the 
discrete-time 

matrices�

�t = 0.1s

�t = 0.5s

50�



Sampled-Data Cost Function �

min
�u t( )

�2J =
1
2
�xT (t f )P(t f )�x(t f ) +

1
2

�xT (t) �uT (t)�
�



�

Q M
MT R

�

�
�
�




�
�
�

�x(t)
�u(t)

�

�
�
�




�
�
�
dt

to

t f

	
�
�
�

��


�
�

��

Minimize subject to sampled-data dynamic constraint�

�x(tk+1) = �� �t( )�x(tk ) + �� �t( )�u(tk )

Sampled-Data Cost Function: a Discrete-Time  Cost Function 
that accounts for system response between sampling instants�

min
�u t( )

�2J = 1
2
�xk f

TPk f �xk f +
1
2

�xT (t) �uT (t)�
�

�
�

Q M
MT R

�

�
�
�

�

�



�x(t)
�u(t)

�

�
�
�

�

�


dt

tk

tk+1

�
�
�



	


�
�



�
k=0

k f �1

�

Sum integrals over short time intervals, (tk, tk+1)�

51�

Integrand of Sampled-
Data Cost Function �

Use dynamic equation ...�

1
2

�xT (t) �uT (t)�
�

�
�

Q M
MT R

�

�
�
�

�

�



�x(t)
�u(t)

�

�
�
�

�

�


dt

tk

tk+1

�
�
�



	


�
�



�
k=0

k f �1

�

...to express the integrand in the sampling interval, (tk,tk+1)�

 

�x t( ) = �� t,tk( )�x tk( ) + �� t,tk( )�u tk( )
� �� t,tk( )�xk + �� t,tk( )�uk

52�



Integrand of Sampled-
Data Cost Function �

1
2

�xT (t) �uT (t)�
�

�
�

Q M
MT R

�

�
�
�

�

�



�x(t)
�u(t)

�

�
�
�

�

�


dt

tk

tk+1

�
�
�



	


�
�



�
k=0

k f �1

�

=
1
2

�xk
T �uk

T�
�

�
�

��T t,tk( )Q�� t,tk( ) ��T t,tk( ) Q�� t,tk( ) ++M�� ��

Q�� t,tk( ) ++M�� ��
T
�� t,tk( ) R + ��T t,tk( )M +MT�� t,tk( ) ++ ��T t,tk( )Q�� t,tk( )�� ��

�

�

�
�
�

�

�

�
�
�tk

tk+1


k

dt
�xk
�uk

�

�
�
�

�

�
�
�

	



�

�
�

�

�
�

�
�k=0

k f �1

�

= 1
2

�xk
T �uk

T�
�

�


Q̂ M̂
M̂T R̂

�

�
�
�

�


�
�
k

�xk
�uk

�

�
�
�

�


�
�

�
�



	


�
�



�
k=0

k f �1

�

Bring state and control out of integral�
Assume control is constant in sampling interval�

Integration has been replaced by summation�

Berman, Gran, J. Aircraft, 1974� 53�

Sampled-Data Cost Function 
Weighting Matrices �

Q̂ = ��T t,tk( )Q�� t,tk( )dt
tk

tk+1

�

M̂ = ��T t,tk( ) Q�� t,tk( ) ++M�� ��dt
tk

tk+1

�

R̂ = R + ��T t,tk( )M +MT�� t,tk( ) ++ ��T t,tk( )Q�� t,tk( )�� ��dt
tk

tk+1

�

The integrand accounts for continuous-time variations of the 
LTI system between sampling instants (��Inter-sample ripple��)�

Assume Q, M, and R are constant  in the integration interval

�� t,tk( )  and �� t,tk( )  vary in the integration interval

54�



Evaluating Sampled-Data 
Weighting Matrices �

�� t,tk( )  and �� t,tk( )  vary in the integration interval

Break interval into smaller intervals, and approximate as 
sum of short rectangular integration steps�

 

Q̂ = ��T t,0( )Q�� t,0( )dt
0

�t

�

� ��T tk�1,0( )Q�� tk�1,0( )� t�� 	

k=1

100

� , � t = �t 100, tk = k� t

� eF
T tk�1QeFtk�1� t�� 	


k=1

100

�

55�

Q̂,M̂,  and R̂ evaluated just once for LTI system

�� = eF� t � I( )F�1G = I + 1
2!
F �t( )�� � +

1
3!
F �t( )�� �

2 + ...�
��

	
�

G�t

Evaluating Sampled-Data 
Weighting Matrices �

 

M̂ = ��T t,0( ) Q�� t,0( ) ++M
� ��dt
0

�t

�

� eF
T tk�1Q I+ 1

2!
Ftk�1[ ]+ 13! Ftk�1[ ]2 + ...�

	�
�
��Gtk�1



��

�
��
+M


�
�

�
�
�
� t

k=1

100

�

R̂ � R + ��T tk�1( )M +MT�� tk�1( ) ++ ��T tk�1( )Q�� tk�1( )
� ��� t
k=1

100

�
56�



Sampled-Data Cost Function 
Weighting Always Includes 

State-Control Weighting �

M̂ = ��T t,tk( ) Q�� t,tk( ) ++M�� ��dt
tk

tk+1

�

= ��T t,tk( )Q�� t,tk( )dt
tk

tk+1

�   even if M = 0

Lk =
1
2

�xk
TQ̂�xk + 2�xk

TM̂�uk + �uk
T R̂�uk�� ��

Sampled-Data Lagrangian�

57�

Dynamic Programming 
Approach to Sampled-Data 

Optimal Control�

58�



Discrete-Time Hamilton-Jacobi-
Bellman Equation �

V (to ) = �k f
+ Lk

k=0

k f �1

�

Value Function at to� Discrete HJB equation�

$� Begin at terminal point with optimal value function�
$� Working backward, add minimum value function 

increment (Bellman��s Principle of Optimality)�

Vk*= �min
�uk

Lk +Vk+1 *{ }
= �min

�uk
Hk , V * �xk f *�� �� = given

subject to
�xk+1 = ���xk + ���uk

… optimal policy … whatever the initial state and initial decision …remaining 
decisions must constitute an optimal policy with regard to the current state�

59�

Sampled-Data Cost Function Contains 
Terminal and Summation Costs �

Integral cost has been replaced by a summation cost�
Terminal cost is the same�

min
�uk

Jsampled

= min
�uk

1
2
�xk f

TPk f�xk f +
1
2

�xk
T �uk

T�
�

�


Q̂ M̂
M̂T R̂

�

�
�
�

�


�
�
k

�xk
�uk

�

�
�
�

�


�
�

�
�



	


�
�



�
k=0

k f �1

�
�
�



	


�
�



�


subject to
�xk+1 = ���xk + ���uk

60�



Dynamic Programming Approach to 
Sampled-Data LQ Control �

V (to ) =
1
2
�xk f

TPk f �xk f +
1
2

�xk
T �uk

T�
�

�


Q̂ M̂
M̂T R̂

�

�
�
�

�


�
�

�xk
�uk

�

�
�
�

�


�
�

�
�



	


�
�



�
k=0

k f �1

�

Vk*= �min
�uk

1
2

�xk *T Q̂�xk *+2�xk *T M̂�uk + �uk
T R̂�uk�� 
� +Vk+1 *�

�
	

�

�

= �min
�uk

Hk , V * �xk f *�� 
� = �xk f *T Pk f�xk f *T

subject to �xk+1 = ���xk + ���uk

Quadratic Value Function at to�

Discrete HJB equation�

61�

Optimality Condition�

Vk =
1
2
�xk

TPk�xk ; Vk+1 =
1
2
�xk+1

TPk+1�xk+1

Assume value function takes a quadratic form�

Optimality condition�
�Hk

��uk
= �xk

TM̂ + �uk
T R̂�� �� +

�Vk+1
��uk

= 0

�Vk+1
��uk

=
� 1
2
�xk+1

TPk+1�xk+1
�
��

�

	

��uk
= ���xk + ���uk[ ]T Pk+1��

�xk
TM̂ + �uk

T R̂�� �� + �xk
T��T + �uk

T��T�� ��Pk+1�� = 0

where�

hence� 62�



Minimizing Value of Control�

 
�uk = � R̂ + ��TPk+1���� ��

�1
M̂T + ��TPk+1���� ���xk � �Ck�xk

Must find  Pk  in 0,k f( )
Use definitions of V *  and �u in HJB equation

�Hk

��uk
= �xk

T M̂ +��TPk+1���� �� + �uk
T R̂ + ��TPk+1���� �� = 0

63�

Solution for Pk�

1
2
�xk

TPk�xk =

�min
�uk

1
2

�xk *
T Q̂�xk *+2�xk *

T M̂ �Ck�xk( ) + �Ck�xk( )T R̂ �Ck�xk( ) + �xk+1
TPk+1�xk+1�

�
�
	

�
�
�



�
�

Vk =
1
2
�xk

TPk�xk ; Vk+1 =
1
2
�xk+1

TPk+1�xk+1

Pk = Q̂+�� TPk+1�� � M̂ T + �� TPk+1���� ��
T
R̂ + �� TPk+1���� ��

�1
M̂ T + �� TPk+1���� ��

Pk f  given

 
�uk = � R̂ + ��TPk+1���� ��

�1
M̂T + ��TPk+1���� ���xk � �Ck�xk

Substitute for Vk ,Vk+1,  and �uk  in discrete-time HJB equation

Rearrange and cancel �xk  on both sides of the equation to yield the
discrete-time Riccati equation

64�



Discrete-Time System with Linear-
Quadratic Feedback Control �

Dynamic System�

Control law�

Dynamic system with LQ feedback control�

�xk+1 = ���xk + ���uk

 
�uk = � R̂ + �� TPk+1���� ��

�1
M̂ T + �� TPk+1���� ���xk � �Ck�xk

�xk+1 = ���xk + ���uk
= ���xk + �� �Ck�x( )k

= �� � ��Ck( )�xk
65�

Example: 1st-Order System with 
LQ Feedback Control �

1st-order discrete-time dynamic system�

LQ optimal control law�

Dynamic system with LQ feedback control�
�xk+1 = ��xk + ��uk
= ��xk + � �ck�x( )k

= � �� ck( )�xk

�xk+1 = ��xk + ��uk

 
�uk = �

m + �� pk+1
r + � 2 pk+1

�xk � �ck�xk pk = q + �
2 pk+1 �

m + �� pk+1( )2

r + � 2 pk+1

, pkf  given
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Next Time:�
Dynamic System Stability�

�

Reading�
OCE: Section 2.5�

67�

SSuupppplleemmeennttaall  
MMaatteerriiaall  

68�



Example: Separate 
Solutions for Nominal and 

Perturbation Trajectories�

 

��x1
��x2
��x3

�

�

�
�
�

�

�

�
�
�
=

0 1 0
�2a1 x3N � x1N( ) �a2 a2 + 2a1 x3N � x1N( )
c1 + b3u1N( ) c1 3c2x3N

2

�

�

�
�
�
�

�

�

�
�
�
�

�x1
�x2
�x3

�

�

�
�
�

�

�

�
�
�

+
0 0
b1 b2
b3x1N 0

�

�

�
�
�

�

�

�
�
�

�u1
�u2

�

�
�
�

�

�
�
�
+

d
0
0

�

�

�
�
�

�

�

�
�
�
�w1 ;

�x1(to )
�x2 (to )
�x3(to )

�

�

�
�
�

�

�

�
�
�
given

Linear, time-varying equation describes perturbation dynamics�

Original nonlinear equation describes nominal dynamics�

 

�xN =

�x1N
�x2N
�x3N

�

�

�
�
�
�

�

�

�
�
�
�

=

x2N + dw1N

a2 x3N � x2N( ) + a1 x3N � x1N( )2 + b1u1N
c2x3N

3 + c1 x1N + x2N( ) + b3x1N u1N
+ b2u2N

�

�

�
�
�
�
�

�

�

�
�
�
�
�

,

x1N
x2N
x3N

�

�

�
�
�
�

�

�

�
�
�
�

given
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Multivariable LQ Optimal Control 
with Cross Weighting, M, = 0�

 

�P t( ) = �Q[ ]� F[ ]T P t( )� P t( ) F[ ]+ P t( )GR�1GTP t( )
P t f( ) = Pf

�u(t) = �R�1 GTP t( )�� ���x t( )

�2J = 1
2
�xT (t f )P(t f )�x(t f )

+ 1
2

�xT (t) �uT (t)�
�



�
Q 0
0 R

�

�
�




�
�

�x(t)
�u(t)

�

�
�
�




�
�
�
dt

to

t f

	
�
�
�

��


�
�

��

No state/control coupling in cost function�

 ��x(t) = F�x(t) +G�u(t)
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First-Order LQ Example Code�
%   First-Order LQ Example�
%   Rob Stengel �
%   2/23/2011�
 �
    clear�
    global tp p q tw w�
    �
    xo = 0;�to = 0; �tf = 10;�
    tspanx  =   [to tf];�
    tw      =   [0:0.01:10];�
    for k   =   1:length(tw)�
        w(k)    =   randn(1);�
    end�
    [tx,x]  =   ode15s('First',tspanx,xo);�
    pf      =   0; �q �=   100;�
    tspanp  =   [tf to];�
    [tp,p]  =   ode15s('FirstRiccati',tspanp,pf);�
    [tc,xc] =   ode15s('FirstCL',tspanx,xo);�
    u       =   interp1(tp,p,tc).*xc;�
    figure�
    subplot(4,1,1)�
    plot(tx,x),grid,xlabel('Time'),ylabel('x-open-loop')�
    subplot(4,1,2)�
    plot(tp,p,'r'),grid,xlabel('Time'),ylabel('p')�
    subplot(4,1,3)�
    plot(tc,u),grid, xlabel('Time'),ylabel('u')�
    subplot(4,1,4)�
    plot(tc,xc,'r',tx,x,'b'),grid,xlabel('Time'),ylabel('x-�closed-loop')�
�

function xdot   =   First(t,x)�
�global tp p tw w �
�wt      =   interp1(tw,w,t,'nearest');�
�xdot    =   -x + wt;�

 
function pdot   =   FirstRiccati(t,p)�

�global q�
�pdot    =   -q + 2*p + p^2;�

 
function xdot   =   FirstCL(tc,xc);�

�global tp p tw w �
�wt      =   interp1(tw,w,tc,'nearest');�
�pt      =   interp1(tp,p,tc);�
�xdot    =   -(1 + pt)*xc + wt;�

71�

Nominal- and Neighboring-Optimal 
Control of the Dynamic Model�

Neighboring-Optimal Control�
�u(t) = �C(t) x(t)� xopt (t)�� ��

u(t) = uopt (t)+ �u(t)

Nominal, Open-Loop Optimal Control� u(t) = uopt (t)
y = Ix

72�



Nonlinear System with 
Neighboring-Optimal 

Feedback Control �
Nonlinear dynamic system�

 �x(t) = f x t( ),u(t)�� ��

u(t) = u * (t) �C(t)�x t( ) = u * (t) �C(t) x t( ) � x * t( )�� ��

 
�x(t) = f x t( ), u * (t) �C(t) x t( ) � x * t( )�� ���� ��{ }

Neighboring-optimal control law�

Nonlinear dynamic system with neighboring-
optimal feedback control�

73�

Development of �
Neighboring-Optimal Therapy�

x(t) = x * (t) + �x(t)
u(t) = u * (t) + �u(t)

$� �B:+8.�.C8+73-�/;?+>398�>9�E<=>�./1<//�

$� Compute nominal optimal control history 
using original nonlinear dynamic model�

$� Compute optimal perturbation control 
using locally linearized dynamic model�

$� Sum the two for neighboring-optimal 
control of the dynamic system�

�u(t) = �C(t) x(t)� xopt (t)�� ��
u(t) = uopt (t)+ �u(t)

u(t) = uopt (t)
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Continuous-Time LQ 
Optimization via Dynamic 

Programming�

75�

Dynamic Programming 
Approach to Continuous-

Time LQ Control �

V (to ) =
1
2
�xT (t f )P(t f ) f �x(t f )

+ 1
2

�xT (t) �uT (t)�
�



�

Q(t) M(t)
MT (t) R(t)

�

�
�
�




�
�
�

�x(t)
�u(t)

�

�
�
�




�
�
�
dt

to

t f

	
�
�
�

��


�
�

��

V (t1) =
1
2
�xT (t f )P(t f )�x(t f )

� 1
2

�xT (t) �uT (t)�
�

�


Q(t) M(t)
MT (t) R(t)

�

�
�
�

�


�
�

�x(t)
�u(t)

�

�
�
�

�


�
�
dt

tf

t1



�
�
	

�	

�
�
	

�	

Value Function at to�

Value Function at t1�
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Dynamic Programming 
Approach to LQ Control �

�V * �x*(t1)[ ]
�t

=

�min
�u

1
2

�x*T (t1)Q(t1)�x*(t1)+ 2�x*
T (t1)M(t1)�u(t1)+ �uT (t1)R(t1)�u(t1)�� 
�

+
�V * �x*(t1)[ ]

��x
F(t1)�x*(t1)+G(t1)�u(t1)[ ]

�

�
		

�
	
	

�


		

�
	
	

Time Derivative of Value Function�
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Dynamic Programming 
Approach to LQ Control �

�V * �x*[ ]
�t

= �min
�u

H �x*,�u, �V *
��x

�
��

�
	�
,

V * �x(t f )�� �	 = �x*T (t f )P(t f )�x*
T (t f )

Hamiltonian�

 

H �x*,�u, �V *
��x

�
��

�
��
�

1
2

�x*T Q�x*+2�x*T M�u+ �uTR�u�� �� +
�V * �x*[ ]

��x
F�x*+G�u[ ]

HJB Equation�
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Plausible Form for 
the Value Function �

V * �x * (t)[ ] = �x *T (t)P(t)�x *T (t)

 

�V *
�t

= �
1
2

�x *T (t1) �P(t1)�x * (t1)�� ��

�V *
��x

= �x *T (t)P(t)

Time Derivative of the Value Function�

Gradient of the Value Function with respect to the state�

Quadratic Function of State Perturbation�
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Optimal Control Law 
and HJB Equation �

�H
�u

= �xTM + �uTR + �xTPG = 0

�u(t) = �R�1 GTP+MT( )�x(t)

 

�xT �P�x =

�xT �Q+MR�1MT�� �� � F �GR�1MT�� ��
T
P� P F �GR�1MT�� �� + PGR

�1GTP{ }�x

Optimal control law�

Incorporate Value Function Model in HJB equation�

�x t( )  can be cancelled on left and right 80�



Matrix Riccati Equation �

 

�P t( ) = �Q(t)+M(t)R�1(t)MT (t)�� ��

� F(t)�G(t)R�1(t)MT (t)�� ��
T
P t( )

�P t( ) F(t)�G(t)R�1(t)MT (t)�� ��
+P t( )G(t)R�1(t)GT (t)P t( )

P t f( ) = �xx t f( )
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