
un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

Chapter 6

PID Controller Design

PID (proportional integral derivative) control is one of the earlier control strategies [59].
Its early implementation was in pneumatic devices, followed by vacuum and solid state
analog electronics, before arriving at today’s digital implementation of microprocessors.
It has a simple control structure which was understood by plant operators and which they
found relatively easy to tune. Since many control systems using PID control have proved
satisfactory, it still has a wide range of applications in industrial control. According to a
survey for process control systems conducted in 1989, more than 90 of the control loops were
of the PID type [60]. PID control has been an active research topic for many years;see the
monographs [60–64]. Since many process plants controlled by PID controllers have similar
dynamics it has been found possible to set satisfactory controller parameters from less plant
information than a complete mathematical model. These techniques came about because of
the desire to adjust controller parameters in situ with a minimum of effort, and also because
of the possible difficulty and poor cost benefit of obtaining mathematical models. The two
most popular PID techniques were the step reaction curve experiment, and a closed-loop
“cycling” experiment under proportional control around the nominal operating point.

In this chapter, several useful PID-type controller design techniques will be presented,
and implementation issues for the algorithms will also be discussed. In Sec. 6.1, the pro-
portional, integral, and derivative actions are explained in detail, and some variations of the
typical PID structure are also introduced. In Sec. 6.2, the well-known empirical Ziegler–
Nichols tuning formula and modified versions will be covered. Approaches for identifying
the equivalent first-order plus dead time model, which is essential in some of the PID con-
troller design algorithms, will be presented. A modified Ziegler–Nichols algorithm is also
given. Some other simple PID setting formulae such as the Chien–Hrones–Reswick for-
mula, Cohen–Coon formula, refined Ziegler–Nichols tuning, Wang–Juang–Chan formula
and Zhuang–Atherton optimum PID controller will be presented in Sec. 6.3. In Sec. 6.4,
the PID tuning formulae for FOIPDT (first- order lag and integrator plus dead time) and
IPDT (integrator plus dead time) plant models, rather than the FOPDT (first-order plus dead
time) model, will be given. A graphical user interface (GUI) implementing hundreds of
PID controllers tuning formulae for FOPDT model will be given in Sec. 6.5. In Sec. 6.6, an
optimization-based design algorithm, together with a GUI for optimal controller design, is

183

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8/
page 18

184 Chapter 6. PID Controller Design

given. In Sec. 6.7, some of the advanced topics on PID control will be presented, such as
integrator windup phenomenon and prevention, and automatic tuning techniques. Finally,
some suggestions on controller structure selections for practical process control are pro-
vided.

6.1 Introduction
6.1.1 The PID Actions

A typical structure of a PID control system is shown in Fig. 6.1, where it can be seen that
in a PID controller, the error signal e(t) is used to generate the proportional, integral, and
derivative actions, with the resulting signals weighted and summed to form the control
signal u(t) applied to the plant model. A mathematical description of the PID controller is

u(t) = Kp

[
e(t) + 1

Ti

∫ t

0
e(τ)dτ + Td

de(t)

dt

]
, (6.1)

where u(t) is the input signal to the plant model, the error signal e(t) is defined as e(t) =
r(t) − y(t), and r(t) is the reference input signal.

The behavior of the proportional, integral, and derivative actions will be demonstrated
individually through the following example.

Example 6.1. Consider a third-order plant model given by G(s) = 1/(s + 1)3. If a pro-
portional control strategy is selected, i.e., Ti → ∞ and Td → 0 in the PID control strategy,
for different values of Kp, the closed-loop responses of the system can be obtained using
the following MATLAB statements:

>> G=tf(1,[1,3,3,1]);
for Kp=[0.1:0.1:1], G_c=feedback(Kp*G,1); step(G_c), hold on; end
figure; rlocus(G,[0,15])

The closed-loop step responses are obtained as shown in Fig. 6.2(a), and it can be seen
that when Kp increases, the response speed of the system increases, the overshoot of the
closed-loop system increases, and the steady-state error decreases. However when Kp is
large enough, the closed-loop system becomes unstable, which can be directly concluded
from the root locus analysis in Sec. 3.4. The root locus of the example system is shown

u(t) plant
model

! e(t)! !
y(t)

!
"

r(t) !controller

..

..

..

..

..

..

..

..

..

.. ..

!"!

PID controller

#$

##

disturbance d(t)

measure-
ment noise

um

Figure 6.1. A typical PID control structure.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

6.1. Introduction 185

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

Step Response

Time (sec)

A
m

pl
itu

de

← Kp = 1

Kp = 0.1

(a) closed-loop step response

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

−2.5 −2 −1.5 −1 −0.5 0 0.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

System: G
Gain: 8
Pole: 2.36e−005 + 1.73i
Damping: −1.37e−005
Overshoot (%): 100
Frequency (rad/sec): 1.73

(b) root locus

Figure 6.2. Closed-loop step responses.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

← Ti = 0.7

← Ti =1.5

(a) PI control

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

← Td = 0.1

← Td =1.5

(b) PID control

Figure 6.3. Closed-loop step responses.

in Fig. 6.2(b), where it is seen that when Kp is outside the range of (0, 8), the closed-loop
system becomes unstable.

If we fix Kp = 1 and apply a PI (proportional plus integral) control strategy for
different values of Ti, we can use the following MATLAB statements:

>> Kp=1; s=tf(’s’);
for Ti=[0.7:0.1:1.5]

Gc=Kp*(1+1/Ti/s); G_c=feedback(G*Gc,1); step(G_c), hold on
end

to generate the closed-loop step responses of the example system shown in Fig. 6.3(a). The
most important feature of a PI controller is that there is no steady-state error in the step
response if the closed-loop system is stable. Further examination shows that if Ti is smaller
than 0.6, the closed-loop system will not be stable. It can be seen that when Ti increases,
the overshoot tends to be smaller, but the speed of response tends to be slower.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

186 Chapter 6. PID Controller Design

Fixing both Kp and Ti at 1, i.e., Ti = Kp = 1, when the PID control strategy is used,
with different Td , we can use the MATLAB statements

>> Kp=1; Ti=1; s=tf(’s’);
for Td=[0.1:0.2:2]

Gc=Kp*(1+1/Ti/s+Td*s); G_c=feedback(G*Gc,1); step(G_c), hold on
end

to get the closed-loop step response shown in Fig. 6.3(b). Clearly, when Td increases the
response has a smaller overshoot with a slightly slower rise time but similar settling time.

In practical applications, the pure derivative action is never used, due to the “derivative
kick” produced in the control signal for a step input, and to the undesirable noise amplifica-
tion. It is usually replaced by a first-order low pass filter. Thus, the Laplace transformation
representation of the approximate PID controller can be written as

U(s) = Kp

1 + 1
Tis

+ sTd

1 + sTd
N

 E(s). (6.2)

The effect of N is illustrated through the following example.

Example 6.2. Consider the plant model in Example 6.1. The PID controller parameters
are Kp = 1, Ti = 1, and Td = 1. With different selections of N, we can use the MATLAB
commands

>> Td=1; Gc=Kp*(1+1/Ti/s+Td*s); step(feedback(G*Gc,1)), hold on
for N=[100,1000,10000,1:10]

Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N)); G_c=feedback(G*Gc,1); step(G_c)
end
figure; [y,t]=step(G_c); err=1-y; plot(t,err)

to get the closed-loop step response with the approximate derivative terms as shown in
Fig. 6.4(a). The error signal e(t) when N = 10 is shown in Fig. 6.4(b). It can be seen that
with N = 10, the approximation is fairly satisfactory.

6.1.2 PID Control with Derivative in the Feedback Loop

From Fig. 6.4(b), it can be seen that there exists a jump when t = 0 in the error signal of the
step response. This means that the derivative action may not be desirable in such a control
strategy.

Thus, in practice, the derivative term may be preferred in the feedback path. Since
the output does not change instantaneously for a step input a smoother signal is produced by
taking the derivative of the output. This PID control strategy, which will be denoted PI-D,
is shown in Fig. 6.5.

Recall the typical feedback control structure shown in Fig. 1.2. The controller and
feedback transfer functions can be equivalently written as

Gc(s) = Kp

(
1 + 1

Tis

)
, (6.3)

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

6.2. Ziegler–Nichols Tuning Formula 187

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

N = 1

(a) output signal

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b) error signal

Figure 6.4. PID control with approximate derivatives.

plant modelKp

(
1+

1
Tis

)
! ! !

Tds

1+Tds/N
$

"
! !

"− −

y(t)r(t)

Figure 6.5. PID control with derivative on output signal.

H(s) = (1 + Kp/N)TiTds
2 + Kp(Ti + Td/N) + Kp

Kp(Tis + 1)(Tds/N + 1)
. (6.4)

The following example is designed to illustrate the consequence of using the derivative
in the feedback path.

Example 6.3. For the plant model in Example 6.1, by the following MATLAB statements:

>> G=tf(1,[1,3,3,1]); Ti=1; Td=1; Kp=1; N=10; s=tf(’s’);
Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
G_c=feedback(G*Gc,1); Gc1=Kp*(1+1/s/Ti);
H=((1+Kp/N)*Ti*Td*sˆ2+Kp*(Ti+Td/N)*s+Kp)/(Kp*(Ti*s+1)*(Td/N*s+1));
G_c1=feedback(G*Gc1,H); step(G_c,G_c1)

the closed-loop step responses for the system with PID and PI-D are obtained and compared in
Fig. 6.6. By observation, the response with the PI-D controller is slower and the overshoot larger for
this particular example.

6.2 Ziegler–Nichols Tuning Formula
6.2.1 Empirical Ziegler–Nichols Tuning Formula

A very useful empirical tuning formula was proposed by Ziegler and Nichols in early 1942
[10]. The tuning formula is obtained when the plant model is given by a first-order plus

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

188 Chapter 6. PID Controller Design

0 5 10 15 20 25 30 35
0

0.5

1

1.5

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

← D in feedback
← normal PID

Figure 6.6. The closed-loop step responses comparison.

!

!

"

!

k

time t

y(t)

1
Kc

!$ Imaginary

real

(a) time response (b) Nyquist plot

a

"

L T$$$!

Figure 6.7. Sketches of the responses of an FOPDT model.

dead time (FOPDT) which can be expressed by

G(s) = k

1 + sT
e−sL. (6.5)

In real-time process control systems, a large variety of plants can be approximately
modeled by (6.5). If the system model cannot be physically derived, experiments can be
performed to extract the parameters for the approximate model (6.5). For instance, if the
step response of the plant model can be measured through an experiment, the output signal
can be recorded as sketched in Fig. 6.7(a), from which the parameters of k, L, and T (or
a, where a = kL/T) can be extracted by the simple approach shown. More sophisticated
curve fitting approaches can also be used. With L and a, the Ziegler–Nichols formula in
Table 6.1 can be used to get the controller parameters.

If a frequency response experiment can be performed, the crossover frequency ωc

and the ultimate gain Kc can be obtained from the Nyquist plot as shown in Fig. 6.7(b).
Let Tc = 2π/ωc. The PID controller parameters can also be retrieved from Table 6.1. It
should be noted that Table 6.1 applies for the design of P (proportional) and PI controllers
in addition to the PID controller with the same set of experimental data from the plant.
Since only the 180◦ point on the Nyquist locus is used in this approach, Ziegler and Nichols

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

6.2. Ziegler–Nichols Tuning Formula 189

suggested it can be found by putting the controller in the proportional mode and increasing
the gain until an oscillation takes place. The point is then obtained from measurement of
the gain and the oscillation frequency. This result, however, is based on linear theory, and
although the technique has been used in practice, it does have major problems.

A MATLAB function ziegler() exists to design PI/PID controllers using the
Ziegler–Nichols tuning formulas:

1 function [Gc,Kp,Ti,Td,H]=ziegler(key,vars)
2 Ti=[]; Td=[]; H=1;
3 if length(vars)==4,
4 K=vars(1); L=vars(2); T=vars(3); N=vars(4); a=K*L/T;
5 if key==1, Kp=1/a;
6 elseif key==2, Kp=0.9/a; Ti=3.33*L;
7 elseif key==3 | key==4, Kp=1.2/a; Ti=2*L; Td=L/2; end
8 elseif length(vars)==3,
9 K=vars(1); Tc=vars(2); N=vars(3);

10 if key==1, Kp=0.5*K;
11 elseif key==2, Kp=0.4*K; Ti=0.8*Tc;
12 elseif key==3 | key==4, Kp=0.6*K; Ti=0.5*Tc; Td=0.12*Tc; end
13 elseif length(vars)==5,
14 K=vars(1); Tc=vars(2); rb=vars(3); N=vars(5);
15 pb=pi*vars(4)/180; Kp=K*rb*cos(pb);
16 if key==2, Ti=-Tc/(2*pi*tan(pb));
17 elseif key==3|key==4, Ti=Tc*(1+sin(pb))/(pi*cos(pb)); Td=Ti/4; end
18 end
19 [Gc,H]=writepid(Kp,Ti,Td,N,key);

There is a low-level function writepid()which can be used in the design function;
the content of the function is

1 function [Gc,H]=writepid(Kp,Ti,Td,N,key)
2 switch key
3 case 1, Gc=Kp;
4 case 2, Gc=tf(Kp*[Ti,1],[Ti,0]); H=1;
5 case 3, nn=[Kp*Ti*Td*(N+1)/N,Kp*(Ti+Td/N),Kp];
6 dd=Ti*[Td/N,1,0]; Gc=tf(nn,dd); H=1;
7 case 4, d0=sqrt(Ti*(Ti-4*Td)); Ti0=Ti; Kp=0.5*(Ti+d0)*Kp/Ti;
8 Ti=0.5*(Ti+d0); Td=Ti0-Ti; Gc=tf(Kp*[Ti,1],[Ti,0]);
9 nH=[(1+Kp/N)*Ti*Td, Kp*(Ti+Td/N), Kp];

10 H=tf(nH,Kp*conv([Ti,1],[Td/N,1]));
11 case 5, Gc=tf(Kp*[Td*(N+1)/N,1],[Td/N,1]); H=1;
12 end

It seems that this function is quite lengthy for the simple Ziegler–Nichols formula
given in Table 6.1. In fact, the MATLAB function also embeds a design formula discussed

Table 6.1. Ziegler–Nichols tuning formulae.

Controller from step response from frequency response

type Kp Ti Td Kp Ti Td

P 1/a 0.5Kc

PI 0.9/a 3L 0.4Kc 0.8Tc

PID 1.2/a 2L L/2 0.6Kc 0.5Tc 0.12Tc

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

190 Chapter 6. PID Controller Design

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

t1 =0.76 t2 =2.72

(a) open-loop step response

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

← P controller

← PI controller
← PID controller

(b) closed-loop step response

Figure 6.8. Controller design and responses with time domain parameters.

later in this chapter. Here we shall consider only the syntax for the simple Ziegler–Nichols
tuning rule

[Gc,Kp,Ti,Td]=ziegler(key,vars),

where key determines the controller type with key = 1 for the P controller, key = 2 for
the PI controller, andkey = 3 for the PID controller. When step response data are available,
one should specify vars = [K, L, T, N], while vars = [Kc, Tc, N] are designed for the
given frequency response data.

Example 6.4. Consider a fourth-order plant

G(s) = 10
(s + 1)(s + 2)(s + 3)(s + 4)

.

Enter the following MATLAB statements:

>> s=tf(’s’); G=10/(s+1)/(s+2)/(s+3)/(s+4);
step(G); k=dcgain(G)

The open-loop step response is shown in Fig. 6.8(a), with a steady-state value of 0.4167.
From the step response, the parameters of the approximate FOPDT model are k = 0.2941,
L = 0.76, and T = 2.72 − 0.76 = 1.96, based on which the P, PI, and PID controllers can
be designed using the following MATLAB statements:

>> L=0.76; T=2.72-L; [Gc1,Kp1]=ziegler(1,[k,L,T,10])
[Gc2,Kp2,Ti2]=ziegler(2,[k,L,T,10])
[Gc3,Kp3,Ti3,Td3]=ziegler(3,[k,L,T,10])

The P, PI, and PID controllers designed are, respectively,

Gp(s)=6.1895, G PI(s)=5.57
(

1+ 1
2.5308s

)
, G PID(s)=7.4274

(
1+ 1

1.52s
+0.38s

)
.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

6.2. Ziegler–Nichols Tuning Formula 191

The closed-loop responses for these different controllers are obtained using the MAT-
LAB statements

>> G_c1=feedback(G*Gc1,1); G_c2=feedback(G*Gc2,1);
G_c3=feedback(G*Gc3,1); step(G_c1,G_c2,G_c3);

and they are shown in Fig. 6.8(b). It can be observed that the steady-state error exists when
the P controller is used, and the response of the PID controller is faster than that of the PI
controller.

If the frequency response of the plant model can be measured, the ultimate gain Kc

and the crossover frequency ωc can be read from the Nyquist plot as shown in Fig. 6.7(b).
With Kc and ωc, the parameters of different PID-type controllers can be obtained from
Table 6.1. In this case, the MATLAB function ziegler() can still be used.

In fact, since the crossover frequency ωc and the ultimate gain Kc are the gain margin
of the open-loop plant model, one can directly obtain the parameters using the margin()
function.

Example 6.5. Consider the plant model in Example 6.4. By the MATLAB statements

>> G=tf(10, [1,10,35,50,24]);
nyquist(G); axis([-0.2,0.6,-0.4,0.4])
[Kc,pp,wg,wp]=margin(G); [Kc,wg], Tc=2*pi/wg;
[Gc1,Kp1]=ziegler(1,[Kc,Tc,10]); Kp1
[Gc2,Kp2,Ti2]=ziegler(2,[Kc,Tc,10]); [Kp2,Ti2]
[Gc3,Kp3,Ti3,Td3]=ziegler(3,[Kc,Tc,10]); [Kp3,Ti3,Td3]

the gain margin and its crossover frequency are found to be, respectively, 12.6, and 2.2361
rad/sec. The controllers are designed as

Gp(s)=6.3, G PI(s)=5.04
(

1 + 1
2.2479s

)
, G PID(s)=7.56

(
1 + 1

1.405s
+ 0.3372s

)
.

The Nyquist plot of the system can be obtained and is shown in Fig. 6.9(a). With these
different controllers, the closed-loop system responses can be obtained using the MATLAB
statements

>> G_c1=feedback(G*Gc1,1); G_c2=feedback(G*Gc2,1);
G_c3=feedback(G*Gc3,1); step(G_c1,G_c2,G_c3);

and the step responses of the closed-loop system are shown in Fig. 6.9(b).

6.2.2 Derivative Action in the Feedback Path

Assume that the derivative action is placed in the feedback path; then the normal PID
parameters (Kp, Ti, Td) can be obtained from [65] as

Kp = K′
p

(
1 + T ′

d

T ′
i

)
, Ti = T ′

i + T ′
d, Td = T ′

i T
′
d

T ′
i + T ′

d

, (6.6)

where (K′
p, T ′

i , T
′
d) are the PID parameters with derivative in the feedback path.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

192 Chapter 6. PID Controller Design

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Nyquist Diagram

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) Nyquist plots

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

← PID controller

← PI controller

← P controller

(b) closed-loop step response

Figure 6.9. Controller design and responses.

In other words, if a PID controller, with derivative action in a forward path, is designed,
then an equivalent PID controller with the derivative action in the feedback path can be
obtained by solving the following algebraic equation:

x2 − Tix + TiTd = 0, ⇒ x1,2 = Ti ± √
Ti(Ti − 4Td)

2
. (6.7)

It is reasonable to assume in most PID controller designs that Ti > 4Td . In this case,
the above equation will have real roots x1,2. Thus, from (Kp, Ti, Td), the equivalent PID
parameters for the new structure, i.e., with derivative in the feedback path, can be computed
as follows:

T ′
i = Ti + √

Ti(Ti − 4Td)

2
, T ′

d = Ti − √
Ti(Ti − 4Td)

2
,

K′
p = 2TiKp

Ti + √
Ti(Ti − 4Td)

.

(6.8)

The MATLAB function ziegler() can still be used to design such a PID controller.
The syntax of the function now becomes

[Gc,Kp,Ti,Td,H]=ziegler(key,vars)

with key = 4 and H is the equivalent feedback transfer function object.

Example 6.6. Consider the plant model in Example 6.4. The normal PID controller can
be designed using the Ziegler–Nichols algorithm. An effective design of a PID controller
with a derivative in the feedback path can also be obtained with the following MATLAB
statements:

>> G=tf(10,[1,10,35,50,24]); N=10; [Kc,Pm,wc,wp]=margin(G);
Tc=2*pi/wc; [Gc1,Kp1,Ti1,Td1]=ziegler(3,[Kc,Tc,N]),
[Gc2,Kp2,Ti2,Td2,H]=ziegler(4,[Kc,Tc,N]),
G_c1=feedback(G*Gc1,1); G_c2=feedback(G*Gc2,H); step(G_c1,G_c2)

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

6.2. Ziegler–Nichols Tuning Formula 193

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Step Response

Time (sec)

A
m

pl
itu

de

← normal PID

← derivative in feedback

Figure 6.10. PID controllers comparison.

The controllers designed are GPID(s) = 7.5600 (1 + 1/1.4050s + 0.3372s), with K′
p =

4.5360, T ′
i = 0.8430, T ′

d = 0.5620, and the step response comparison is shown in
Fig. 6.10(a).

It can be seen that although the PID controller with derivative in the feedback path
might be easier and faster to be implemented compared to the normal PID controller, its
performance may not be very satisfactory. Sometimes, such a PID controller should be
designed using a dedicated algorithm to ensure a good control performance.

6.2.3 Methods for First-Order Plus Dead Time Model Fitting

It can be seen that the model (6.5) is useful for designing a PID controller because of
the availability of a simple formula. The method in Sec. 6.2.1 for finding L and T of a
given plant is simple to use with the graph of a plant step response. Although in modern
computation it is not necessary to reduce a model to this form to find suitable PID controller
parameters, which may be found by using the original model with one of many possible
approaches, nevertheless it can be useful. Given the plant transfer function, we can use
one of the model reduction methods described in Chapter 3. For example, the suboptimal
reduction method [47] is very effective at the expense of an affordable heavy computational
load. The optimal reduced-order model can be obtained with the function opt_app(),
covered in Sec. 3.6. In this section, two other effective and frequently used algorithms will
be introduced.

Frequency response method

Consider the frequency response of a first-order model

G(jω) = k

Ts + 1
e−Ls

∣∣∣∣
s=jω

= k

T jω + 1
e−jωL. (6.9)

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

194 Chapter 6. PID Controller Design

The ultimate gain Kc at the crossover frequency ωc is actually the first intersection of
a Nyquist plot with the negative part of the real axis, i.e.,

k(cos ωcL − ωcT sin ωcL)

1 + ω2
cT

2 = − 1
Kc

,

sin ωcL + ωcT cos ωcL = 0,

(6.10)

where k is the steady-state value or DC (direct current) gain of the system which can be
directly evaluated from the given transfer function. Define two variables x1 = L and x2 = T

satisfying

{
f1(x1, x2) = kKc(cos ωcx1 − ωcx2 sin ωcx1) + 1 + ω2

cx
2
2 = 0,

f2(x1, x2) = sin ωcx1 + ωcx2 cos ωcx1 = 0.
(6.11)

The Jacobian matrix is that

J =
[

∂f1/∂x1 ∂f1/∂x2
∂f2/∂x1 ∂f2/∂x2

]

=
[−kKcωc sin ωcx1−kKcω

2
cx2 cos ωcx1 2ω2

cx2−kKcωc sin ωcx1
ωc cos ωcx1−ω2

cx2 sin ωcx1 ωc cos ωcx1

]
.

(6.12)

So, (x1, x2) can be solved using any quasi-Newton algorithm. The MATLAB function
[K,L,T]= getfod(G) is written for solving x1 and x2 in order to find the parameters

K, L, T of the system.

1 function [K,L,T]=getfod(G,method)
2 K=dcgain(G);
3 if nargin==1
4 [Kc,Pm,wc,wcp]=margin(G); ikey=0; L=1.6*pi/(3*wc); T=0.5*Kc*K*L;
5 if finite(Kc), x0=[L;T];
6 while ikey==0, u=wc*x0(1); v=wc*x0(2);
7 FF=[K*Kc*(cos(u)-v*sin(u))+1+vˆ2; sin(u)+v*cos(u)];
8 J=[-K*Kc*wc*sin(u)-K*Kc*wc*v*cos(u), -K*Kc*wc*sin(u)+2*wc*v;
9 wc*cos(u)-wc*v*sin(u), wc*cos(u)];

10 x1=x0-inv(J)*FF;
11 if norm(x1-x0)<1e-8, ikey=1; else, x0=x1;
12 end, end
13 L=x0(1); T=x0(2);
14 end
15 elseif nargin==2 & method==1
16 [n1,d1]=tfderv(G.num{1},G.den{1}); [n2,d2]=tfderv(n1,d1);
17 K1=dcgain(n1,d1); K2=dcgain(n2,d2);
18 Tar=-K1/K; T=sqrt(K2/K-Tarˆ2); L=Tar-T;
19 end
20 function [e,f]=tfderv(b,a)
21 f=conv(a,a); na=length(a); nb=length(b);
22 e1=conv((nb-1:-1:1).*b(1:end-1),a);
23 e2=conv((na-1:-1:1).* a(1:end-1),b); maxL=max(length(e1),length(e2));
24 e=[zeros(1,maxL-length(e1)) e1]-[zeros(1,maxL-length(e2)) e2];

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

6.2. Ziegler–Nichols Tuning Formula 195

Transfer function method

Consider the first-order model with delay given by

Gn(s) = ke−Ls

Ts + 1
.

Taking the first- and second-order derivatives of Gn(s) with respect to s, one can immediate
find that

G′
n(s)

Gn(s)
= −L − T

1 + Ts
,

G′′
n(s)

Gn(s)
−

(
G′

n(s)

Gn(s)

)2

= T 2

(1 + Ts)2 .

Evaluating the values at s = 0 yields

Tar = −G′
n(0)

Gn(0)
= L + T, T 2 = G′′

n(0)

Gn(0)
− T 2

ar, (6.13)

where Tar is also referred to as the average residence time. From the former equation, one
has L = Tar − T . Again, the DC gain k can be evaluated from Gn(0).

The solution for the FOPDT model is thus obtained by using the derivatives of its
transfer function G(s) in the above formula.

The MATLAB function getfod() listed earlier can be used with the syntax
[K,L,T]= getfod(G,1) to find the parameters K, L, T of the system.

Example 6.7. Consider the fourth-order model used in Example 6.4. The parameters of its
approximate FOPTD model can be obtained using the MATLAB statements

>> G=tf(10,[1,10,35,50,24]);
[k,L,T]=getfod(G); G1=tf(k,[T 1]); G1.ioDelay=L;
[Gc1,Kp3,Ti3,Td3]=ziegler(3,[k,L,T,10])
[k,L,T]=getfod(G,1), G2=tf(k,[T 1]); G2.ioDelay=L;
nyquist(G,’-’,G1,’--’,G2,’:’); figure
[Gc2,Kp4,Ti4,Td4]=ziegler(3,[k,L,T,10])
G_c1=feedback(G*Gc1,1); G_c2=feedback(G*Gc2,1); step(G_c1,G_c2)

The Nyquist plot comparisons of the plant model and the two approximations are shown in
Fig. 6.11(a).

With the frequency response method, the K, L, T parameters are obtained as 0.4167,
0.7882, 2.3049. The PID controller designed with the Ziegler–Nichols formulas is Gc1(s) =
8.4219 (1 + 1/1.5764s + 0.3941s). While the parameters using the transfer function method
are 0.4167, 0.8902, 1.1932, the PID controller isGc2(s) = 3.8602 (1 + 1/1.7804s + 0.4451s).
The closed-loop step responses with the above two PID controllers are shown in Fig. 6.11(b).

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

196 Chapter 6. PID Controller Design

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Nyquist Diagram

Real Axis

Im
ag

in
ar

y
A

xi
s

(a) Nyquist plots

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)
A

m
pl

itu
de

← frequency response fitting

← transfer function based fitting

(b) closed-loop step responses

Figure 6.11. PID controller responses.

It can be seen that although the PID controller designed with the transfer function
identification algorithm looks better, it does not reflect the usual overshoot characteristics
of Ziegler–Nichols tuning, presumably due to the inaccurately identified parameters of an
FOPDT model.

With the use of the suboptimal model reduction technique presented in Sec. 3.6.3, the
parameters can be extracted with the following statements and the controller can better be
designed:

Gr=opt_app(G,0,1,1); [n,d]=tfdata(G,’v’);
K=dcgain(G); T=d(1)/d(2); L=Gr.ioDelay;

6.2.4 A Modified Ziegler–Nichols Formula

Consider the Nyquist frequency response shown in Fig. 6.12(a), where for a selected point A
on the Nyquist plot, the control effects of the P, I, and D terms are shown in the appropriate
directions. Thus, with properly chosen Kp, Ti, and Td , it is possible to move the given point
A on the Nyquist curve of the uncontrolled plant to an arbitrary position on the Nyquist
plot of the controlled system. The typical Nyquist plot under PID control is shown in
Fig. 6.12(b), where A1 corresponds to the point A in Fig. 6.12(a).

Denote pointAin the complex plane asG(jω0) = raej(π+φa). SupposeAis to be moved
to A1 which is represented by G1(jω0) = rb ej(π+φb). Assume that the PID controller at
frequency ω0 is Gc(s) = rcejφc . Then, obviously,

rbej(π+φb) = rarcej(π+φa+φc). (6.14)

Therefore, rc = rb/ra and φc = φb − φa. So, based on the above analysis, PI and PID
controllers can be designed as follows:

• PI control: The controller can be designed such that

Kp = rb cos(φb − φa)

ra
, Ti = 1

ω0tan(φa − φb)
, (6.15)

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

6.2. Ziegler–Nichols Tuning Formula 197

!

"Imaginary

real

(a) original Nyquist plot

"Imaginary

real

(b) new Nyquist plot

%
&

'D action
A

!

A1

P action

I action

Figure 6.12. Sketches of FOPDT model.

which means that φa > φb for a positive Ti.

As a special case, the Ziegler–Nichols algorithm design is by

Kp = Kcrb cos φb, Ti = − Tc

2πtanφb
, (6.16)

where Tc = 2π/ωc, ra = 1/Kc, and φa = 0.

• PID control: The controller can be designed such that

Kp = rb cos(φb − φa)

ra
, ω0Td − 1

ω0Ti
= tan(φb − φa). (6.17)

Clearly, Ti and Td are not unique according to (6.17). To get a unique PID design, it
is a usual practice to set Td = αTi, where α is a constant. Given an α, Ti and Td can
be obtained uniquely from

Ti = 1
2αω0

(
tan(φb−φa)+

√
4α+tan2(φb−φa)

)
, Td = αTi. (6.18)

By inspection, it is seen that the Ziegler–Nichols tuning formula is a special case when
α = 1/4. The Ziegler–Nichols tuning formula can be rewritten as follows:

Kp =Kcrb cos φb, Ti =
Tc

π

(
1+sin φb

cos φb

)
, Td = Tc

4π

(
1+sin φb

cos φb

)
, (6.19)

where ra = 1/Kc, φa = 0, and α = 1/4.

It can be seen that the PI or PID controllers can be designed by a suitable choice of rb
and φb. The design problem is then one of selecting suitable values for these two parameters
to give the appropriate performance. This is called a modified Ziegler–Nichols PI/PID tuning
formula, which has been implemented in the MATLAB function ziegler(), too. The
only difference is that vars = [Kc, Tc, rb, φb, N].

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

198 Chapter 6. PID Controller Design

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

← φb = 10◦

← φb = 70◦

(a) for different φb

0 2 4 6 8 10
0

0.5

1

1.5

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

← Ziegler-Nichols PID

← rb = 1

(b) for different rb

Figure 6.13. Closed-loop step responses.

Example 6.8. Consider the plant model given by G(s) = 1/(s + 1)3. The PID controller
by the original Ziegler–Nichols tuning method can be obtained as follows:

>> G=tf(1,[1,3,3,1]); [Kc,pp,wg,wp]=margin(G); Tc=2*pi/wg;
[Gc1,Kp1,Ti1,Td1]=ziegler(3,[Kc,Tc,10])

and the controller G(s) = 4.8007 (1 + 1/1.8137s + 0.4353s) is obtained. Now, let us
illustrate the flexibility of the modified Ziegler–Nichols PI/PID tuning formula. First, fix
rb = 0.5 and change φb. By the following MATLAB statements:

>> G_c=feedback(G*Gc1,1); step(G_c,20); rb=0.5; hold on
for pb=[10:10:70]

[Gc2,Kp2,Ti2,Td2]=ziegler(3,[Kc,Tc,rb,pb,10]);
G_c2=feedback(G*Gc2,1); step(G_c2,20);

end

the closed-loop step responses of the system for different values of φb are shown in
Fig. 6.13(a). Clearly, when φb increases, the overshoot and oscillation become smaller.
When φb is larger than 60◦, there is no overshoot, but the response becomes too sluggish.
A good choice for the phase angle based on these responses is approximately 45◦.

Now, fix φb at φb = 45◦ and change rb. By the MATLAB statements

>> G_c=feedback(G*Gc1,1); step(G_c,10); pb=45; hold on;
for rb=[0.1:0.1:1]

[Gc2,Kp2,Ti2,Td2]=ziegler(3,[Kc,Tc,rb,pb,10]);
G_c2=feedback(G*Gc2,1); step(G_c2,10);

end

the closed-loop step responses of the system for different rb are compared in Fig. 6.13(b).
It can be seen that the smaller the rb, the smaller the overshoot and the slower the response.
Clearly, rb = 0.45, and φb = 45◦ can be considered as a good choice for this example with
almost no overshoot and with a reasonably fast response.

It can be concluded that the modified tuning method is advantageous over the original
Ziegler–Nichols PI/PID tuning technique.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 1

6.3. Other PID Controller Tuning Formulae 199

6.3 Other PID Controller Tuning Formulae
Many variants of the traditional Ziegler–Nichols PID tuning methods have been proposed.
Several of these are given in the following section.

6.3.1 Chien–Hrones–Reswick PID Tuning Algorithm

The Chien–Hrones–Reswick (CHR) method [66] emphasizes the set-point regulation or
disturbance rejection. In addition one qualitative specifications on the response speed and
overshoot can be accommodated. Compared with the traditional Ziegler–Nichols tuning
formula, the CHR method uses the time constant T of the plant explicitly.

The CHR PID controller tuning formulas are summarized in Table 6.2 for set-point
regulation. The more heavily damped closed-loop response, which ensures, for the ideal
plant model, the “quickest response without overshoot” is labeled “with 0% overshoot,”
and the “quickest response with 20% overshoot” is labeled “with 20% overshoot.”

Similarly, Table 6.3 is used to design controllers for disturbance rejection purposes.
A MATLAB function chrPID() is written which can be used to design different

controllers using the CHR algorithms:

1 function [Gc,Kp,Ti,Td,H]=chrpid(key,tt,vars)
2 K=vars(1); L=vars(2); T=vars(3); N=vars(4); a=K*L/T; Ti=[]; Td=[];
3 ovshoot=vars(5); if tt==1, TT=T; else TT=L; tt=2; end
4 if ovshoot==0,
5 KK=[0.3,0.35,1.2,0.6,1,0.5; 0.3,0.6,4,0.95,2.4,0.42];
6 else,
7 KK=[0.7,0.6,1,0.95,1.4,0.47; 0.7,0.7,2.3,1.2,2,0.42];
8 end
9 switch key

10 case 1, Kp=KK(tt,1)/a;
11 case 2, Kp=KK(tt,2)/a; Ti=KK(tt,3)*TT;
12 case {3,4}, Kp=KK(tt,4)/a; Ti=KK(tt,5)*TT; Td=KK(tt,6)*L;
13 end
14 [Gc,H]=writepid(Kp,Ti,Td,N,key);

Table 6.2. CHR tuning formulae for set-point regulation.

Controller with 0% overshoot with 20% overshoot

type Kp Ti Td Kp Ti Td

P 0.3/a 0.7/a

PI 0.35/a 1.2T 0.6/a T

PID 0.6/a T 0.5L 0.95/a 1.4T 0.47L

Table 6.3. CHR tuning formulae for disturbance rejection.

Controller with 0% overshoot with 20% overshoot

type Kp Ti Td Kp Ti Td

P 0.3/a 0.7/a

PI 0.6/a 4L 0.7/a 2.3L

PID 0.95/a 2.4L 0.42L 1.2/a 2L 0.42L

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

‘‘book
2007/8
page 2

200 Chapter 6. PID Controller Design

The syntax of the chrpid() function is

[Gc,Kp,Ti,Td]=chrPID(key,typ,vars)

where the returned variables are defined similar to those in ziegler(). key = 1, 2, 3
is for P, PI, and PID controllers, respectively. The variable typ denotes the type of criteria
used with typ = 1 for set-point control and any other value for disturbance rejection.
vars = [k, L, T, N, Os] with Os = 0 denotes no overshoot, and any other value denotes
20% overshoot.

Example 6.9. Consider the plant model in Example 6.4. The Ziegler–Nichols PID con-
troller and the four CHR controllers for different controller types and specifications are
obtained using the following statements:

>> s=tf(’s’); G=10/((s+1)*(s+2)*(s+3)*(s+4));
[k,L,T]=getfod(G); N=10; [Gc1,Kp,Ti,Td]=ziegler(3,[k,L,T,N])
[Gc2,Kp,Ti,Td]=chrpid(3,1,[k,L,T,N,0])
[Gc3,Kp,Ti,Td]=chrpid(3,1,[k,L,T,N,20])
[Gc4,Kp,Ti,Td]=chrpid(3,2,[k,L,T,N,0]);

The four PID controllers designed are, respectively,

G1(s) = 8.4219
(

1+ 1
1.5764s

+0.3941s

)
, G2(s) = 4.2110

(
1+ 1

2.3049s
+0.3941s

)
,

G3(s) = 6.6674
(

1+ 1
3.2268s

+0.3704s

)
, G4(s) = 6.6674

(
1+ 1

1.8917s
+0.3310s

)
.

For the different controllers designed in the above, the step response of the closed-loop
systems can be obtained using the following MATLAB statements:

>> step(feedback(G*Gc1,1),feedback(G*Gc2,1),feedback(G*Gc3,1),...
feedback(G*Gc4,1),10)

as summarized in Fig. 6.14(a). It can be seen that the set-point regulation controller with 0%
overshoot gives a satisfactory result. Similarly, with the following MATLAB statements:

>> step(feedback(G,Gc1),feedback(G,Gc2),feedback(G,Gc3),...
feedback(G,Gc4),30)

the closed-loop responses to a step disturbance signal can be obtained as shown in Fig. 6.14(b).
Clearly, compared with the traditional Ziegler–Nichols controller, the effect of the distur-
bance signal can be significantly reduced by a CHR controller.

6.3.2 Cohen–Coon Tuning Algorithm

Another Ziegler–Nichols type tuning algorithm is the Cohen–Coon tuning formula [67].
Referring to the FOPDT model (6.5) approximately obtained from experiments, denote

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.3. Other PID Controller Tuning Formulae 201

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

(a) set-point step response

0 5 10 15 20 25 30
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Step Response

Time (sec)

A
m

pl
itu

de
(b) disturbance step response

Figure 6.14. Closed-loop step responses of CHR controllers.

a = kL/T and τ = L/(L + T). The different controllers can be designed by the direct use
of Table 6.4.

A MATLAB function cohenpid() is written which can be used to design a PID
controller using the Cohen–Coon tuning formulas:

1 function [Gc,Kp,Ti,Td,H]=cohenpid(key,vars)
2 K=vars(1); L=vars(2); T=vars(3); N=vars(4);
3 a=K*L/T; tau=L/(L+T); Ti=[]; Td=[];
4 switch key
5 case 1,Kp=(1+0.35*tau/(1-tau))/a;
6 case 2,
7 Kp=0.9*(1+0.92*tau/(1-tau))/a; Ti=(3.3-3*tau)*L/(1+1.2*tau);
8 case {3,4}, Kp=1.35*(1+0.18*tau/(1-tau))/a;
9 Ti=(2.5-2*tau)*L/(1-0.39*tau); Td=0.37*(1-tau)*L/(1-0.81*tau);

10 case 5
11 Kp=1.24*(1+0.13*tau/(1-tau))/a; Td=(0.27-0.36*tau)*L/(1-0.87*tau);
12 end
13 [Gc,H]=writepid(Kp,Ti,Td,N,key);

The syntax is [Gc,Kp,Ti,Td,H]=cohenpid(key,vars) , where the vars argu-
ments should be written as vars = [k, L, T, N].

Table 6.4. Controller parameters of Cohen–Coon method.

Controller Kp Ti Td

P
1
a

(
1 + 0.35τ

1 − τ

)

PI
0.9
a

(
1 + 0.92τ

1 − τ

)
3.3 − 3τ

1 + 1.2τ
L

PD
1.24
a

(
1 + 0.13τ

1 − τ

)
0.27 − 0.36τ

1 − 0.87τ
L

PID
1.35
a

(
1 + 0.18τ

1 − τ

)
2.5 − 2τ

1 − 0.39τ
L

0.37 − 0.37τ

1 − 0.81τ
L

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

202 Chapter 6. PID Controller Design

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

← PI

← PID

← P

← PD

Figure 6.15. Step responses under controllers of the Cohen–Coon method.

Example 6.10. Consider the plant model given in Example 6.4 with its P, PI, PD, and PID
controllers designed using the following MATLAB statements:

>> G=tf(10,[1,10,35,50,24]); [k,L,T]=getfod(G);
[Gc1,Kp1]=cohenpid(1,[k,L,T,10])
[Gc2,Kp2,Ti2]=cohenpid(2,[k,L,T,10])
[Gc3,Kp3,Ti3,Td3]=cohenpid(5,[k,L,T,10])
[Gc4,Kp4,Ti4,Td4]=cohenpid(3,[k,L,T,10])

and the controllers are obtained as

G1(s) = 7.8583, G2(s) = 8.3036 (1 + 1/1.5305s) ,

G3(s) = 9.0895(1 + 0.1805s), G4(s) = 10.0579 (1 + 1/1.7419s + 0.2738s) .

With the following MATLAB statements:

>> G_c1=feedback(G*Gc1,1); G_c2=feedback(G*Gc2,1);
G_c3=feedback(G*Gc3,1); G_c4=feedback(G*Gc4,1);
step(G_c1,G_c2,G_c3,G_c4,10)

the closed-loop step responses of the systems with the different controllers are shown in
Fig. 6.15.

6.3.3 Refined Ziegler–Nichols Tuning

Since the PID controller designed by the conventional Ziegler–Nichols tuning formulas
often exhibits rather strong oscillation in the set-point response and a large overshoot, a
refinement to such a PID controller tuning algorithm can be obtained with the use of set-
point weighting [68]:

u(t) = Kp

[
(βuc − y) + 1

Ti

∫
edt − Td

dy

dt

]
, (6.20)

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.3. Other PID Controller Tuning Formulae 203

Kp

β

1
Tis

"

#

!

!

! ! plant! !!

KpTds $
"

""

yuuc(t) e(t)

Kp(1 − β) $$

Figure 6.16. Refined PID control structure.

where the derivative action is performed on the output signal and a fraction of the input
signal is added to the control signal. Usually, β < 1. The control law can be rewritten as

u(t) = Kp

(
βe + 1

Ti

∫
edt

)
− Kp

[
(1 − β)y + Td

dy

dt

]
. (6.21)

The block diagram representation of the control system can be constructed as shown in
Fig. 6.16. Compared with the typical feedback control structure shown in Fig. 1.2, after
some transfer function block manipulations, the controller Gc(s) and the feedback H(s) can
be easily obtained as follows:

Gc(s) = Kp

(
β + 1

Tis

)
, (6.22)

H(s) = TiTdβ(N + 2 − β)s2/N + (Ti + Td/N)s + 1
(Tiβs + 1)(Tds/N + 1)

. (6.23)

Define the normalized delay constant τ as τ = L/T and a constant κ by κ = Kck.
For different ranges of the variables τ and κ, PID controller parameters were suggested as
follows:

• If 2.25 < κ < 15 or 0.16 < τ < 0.57, use the original Ziegler–Nichols design
parameters. To ensure that the overshoot is less than 10% or 20%, β should be
evaluated, respectively, from

β = 15 − κ

15 + κ
or β = 36

27 + 5κ
. (6.24)

• If 1.5 < κ < 2.25 or 0.57 < τ < 0.96, the integral parameter Ti in the Ziegler–Nichols
controller should be changed to Ti = 0.5µTc, where

µ = 4
9
κ and β = 8

17
(µ − 1). (6.25)

• If 1.2 < κ < 1.5, in order to keep the overshoot less than 10%, the parameters of the
PID should be refined as

Kp = 5
6

(
12 + κ

15 + 14κ

)
, Ti = 1

5

(
4

15
κ + 1

)
. (6.26)

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

204 Chapter 6. PID Controller Design

A MATLAB function rziegler() is written which can be used to design a refined
PID controller:

1 function [Gc,Kp,Ti,Td,beta,H]=rziegler(vars)
2 K=vars(1); L=vars(2); T=vars(3); N=vars(4); a=K*L/T; Kp=1.2/a;
3 Ti=2*L; Td=L/2; Kc=vars(5); Tc=vars(6); kappa=Kc*K; tau=L/T; H=[];
4 if (kappa > 2.25 & kappa<15) | (tau>0.16 & tau<0.57)
5 beta=(15-kappa)/(15+kappa);
6 elseif (kappa<2.25 & kappa>1.5) | (tau<0.96 & tau>0.57)
7 mu=4*jappa/9; beta=8*(mu-1)/17; Ti=0.5*mu*Tc;
8 elseif (kappa>1.2 & kappa<1.5),
9 Kp=5*(12+kappa)/(6*(15+14*kappa)); Ti=0.2*(4*kappa/15+1); beta=1;

10 end
11 Gc=tf(Kp*[beta*Ti,1],[Ti,0]); nH=[Ti*Td*beta*(N+2-beta)/N,Ti+Td/N,1];
12 dH=conv([Ti*beta,1],[Td/N,1]); H=tf(nH,dH);

The syntax of the function is [Gc,Kp,Ti,Td,β,H]=rziegler(vars) , wherevars =
[k, L, T, N, Kc, Tc].

Example 6.11. Consider the plant model in Example 6.4. The refined PID controller can
be designed using the following MATLAB statements:

>> G=tf(10,[1,10,35,50,24]); [k,L,T]=getfod(G);
[Kc,p,wc,m]=margin(G); Tc=2*pi/wc;
[Gc,Kp,Ti,Td,beta,H]=rziegler([k,L,T,10,Kc,Tc])
G_c=feedback(G*Gc,H); [Gc1,Kp1,Ti1,Td1]=ziegler(3,[k,L,T,10]);
G_c1=feedback(G*Gc1,1); step(G_c,G_c1);

The parameters of the refined PID controller should be taken as Kp = 8.4219, Ti =
1.5764, Td = 0.3941, β = 0.4815. The closed-loop step responses under the refined
Ziegler–Nichols PID controller are shown in Fig. 6.17, with a comparison to the response
from the conventional Ziegler–Nichols PID controller. The response is significantly im-
proved but not as good as the responses using other tuning algorithms such as the modified
Ziegler–Nichols method with rb = 0.45, and φb = 45◦.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

← Ziegler-Nichols tuning

← refined ZN tuning

Figure 6.17. Step responses under refined Ziegler–Nichols controller.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.3. Other PID Controller Tuning Formulae 205

6.3.4 The Wang–Juang–Chan Tuning Formula

Based on the optimum ITAE criterion, the tuning algorithm proposed by Wang, Juang, and
Chan [69] is a simple and efficient method for selecting the PID parameters. If the k, L, T

parameters of the plant model are known, the controller parameters are given by

Kp = (0.7303 + 0.5307T/L)(T + 0.5L)

K(T + L)
,

Ti = T + 0.5L, Td = 0.5LT

T + 0.5L
.

(6.27)

A MATLAB function wjcpid() is written for the PID controller design, using the
Wang–Juang–Chan tuning formula:

1 function [Gc,Kp,Ti,Td]=wjcpid(vars)
2 K=vars(1); L=vars(2); T=vars(3); N=vars(4); Td=0.5*L*T/(T+0.5*L);
3 Kp=(0.7303+0.5307*T/L)*(T+0.5*L)/(K*(T+L)); Ti=T+0.5*L;
4 s=tf(’s’); Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));

where vars = [k, L, T, N].

6.3.5 Optimum PID Controller Design

Optimum setting algorithms for a PID controller were proposed by Zhuang andAtherton [70]
for various criteria. Consider the general form of the optimum criterion

Jn(θ) =
∫ ∞

0
[tne(θ, t)]2dt, (6.28)

where e(θ, t) is the error signal which enters the PID controller, with θ the PID controller
parameters. For the system structure shown in Fig. 6.1, two setting strategies are proposed:
one for the set-point input and the other for the disturbance signal d(t). In particular, three
values of n are discussed, i.e., for n = 0, 1, 2. These three cases correspond, respectively, to
three different optimum criteria: the integral squared error (ISE) criterion, integral squared
time weighted error (ISTE) criterion, and the integral squared time-squared weighted error
(IST2E) criterion [65]. The expressions given were obtained by fitting curves to the optimum
theoretical results.

Set-Point optimum PID tuning

If the plant can be represented by the FOPDT model in (6.5), the typical PI controller can
be empirically represented as

Kp = a1

k

(
L

T

)b1

, Ti = T

a2 + b2(L/T)
, (6.29)

where the (a, b) pairs can be obtained from Table 6.5. When the first-order approximation
to the plant model can be obtained, the PI controller can be designed easily by the direct
use of Table 6.5 and (6.29).

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

206 Chapter 6. PID Controller Design

Table 6.5. Set-point PI controller parameters.

Range of L/T 0.1 − 1 1.1 − 2

Criterion ISE ISTE IST2E ISE ISTE IST2E

a1 0.980 0.712 0.569 1.072 0.786 0.628

b1 −0.892 −0.921 −0.951 −0.560 −0.559 −0.583

a2 0.690 0.968 1.023 0.648 0.883 1.007

b2 −0.155 −0.247 −0.179 −0.114 −0.158 −0.167

Table 6.6. Set-point PID controller parameters.

Range of L/T 0.1 − 1 1.1 − 2

Criterion ISE ISTE IST2E ISE ISTE IST2E

a1 1.048 1.042 0.968 1.154 1.142 1.061

b1 −0.897 −0.897 −0.904 −0.567 −0.579 −0.583

a2 1.195 0.987 0.977 1.047 0.919 0.892

b2 −0.368 −0.238 −0.253 −0.220 −0.172 −0.165

a3 0.489 0.385 0.316 0.490 0.384 0.315

b3 0.888 0.906 0.892 0.708 0.839 0.832

Table 6.7. Set-point PID controller parameters with D in feedback path.

Range of L/T 0.1 − 1 1.1 − 2

Criterion ISE ISTE IST2E ISE ISTE IST2E

a1 1.260 1.053 0.942 1.295 1.120 1.001

b1 −0.887 −0.930 −0.933 −0.619 −0.625 −0.624

a2 0.701 0.736 0.770 0.661 0.720 0.754

b2 −0.147 −0.126 −0.130 −0.110 −0.114 −0.116

a3 0.375 0.349 0.308 0.378 0.350 0.308

b3 0.886 0.907 0.897 0.756 0.811 0.813

For the PID controller, its gains can be set as follows:

Kp = a1

k

(
L

T

)b1

, Ti = T

a2 + b2(L/T)
, Td = a3T

(
L

T

)b3

, (6.30)

where for different ratios L/T , the coefficients (a, b) are defined in Table 6.6.
To include the derivative action in the output signal, the corresponding PID controller

is given by

U(s) = Kp

(
1 + 1

Tis

)
E(s) − sTd

1 + sTd/N
Y(s), (6.31)

where the parameters (a, b) should be determined according to Table 6.7.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

‘‘book
2007/8
page 2

6.3. Other PID Controller Tuning Formulae 207

Disturbance rejection PID tuning

Sometimes one may want to design disturbance rejection PID controllers, i.e., to design a
controller having a good rejection performance on the disturbance signal d(t). The param-
eters of the PI controller should be set as

Kp = a1

T

(
L

T

)b1

, Ti = T

a2

(
L

T

)b2

, (6.32)

where the parameters (a, b) are obtained directly from Table 6.8.
Furthermore, for the PID controller,

Kp = a1

T

(
L

T

)b1

, Ti = T

a2

(
L

T

)b2

, Td = a3T

(
L

T

)b3

, (6.33)

and the (a, b) parameters are determined from Table 6.9.
A MATLAB function optpid() is written which can be used to get the parameters

of the PID controller:
1 function [Gc,Kp,Ti,Td,H]=optPID(key,typ,vars)
2 k=vars(1); L=vars(2); T=vars(3); N=vars(4); Td=[];
3 if length(vars)==5, iC=vars(5);
4 switch key
5 case 2
6 A=[0.980,0.712,0.569,1.072,0.786,0.628; 0.892,0.921,0.951,0.560,0.559,0.583;
7 0.690,0.968,1.023,0.648,0.883,1.007; 0.155,0.247,0.179,0.114,0.158,0.167];
8 case 3
9 A=[1.048,1.042,0.968,1.154,1.142,1.061; 0.897,0.897,0.904,0.567,0.579,0.583;

10 1.195,0.987,0.977,1.047,0.919,0.892; 0.368,0.238,0.253,0.220,0.172,0.165;
11 0.489,0.385,0.316,0.490,0.384,0.315; 0.888,0.906,0.892,0.708,0.839,0.832];
12 case 4
13 A=[1.260,1.053,0.942,1.295,1.120,1.001; 0.887,0.930,0.933,0.619,0.625,0.624;
14 0.701,0.736,0.770,0.661,0.720,0.754; 0.147,0.126,0.130,0.110,0.114,0.116;
15 0.375,0.349,0.308,0.378,0.350,0.308; 0.886,0.907,0.897,0.756,0.811,0.813];
16 end
17 ii=0; if (L/T>1) ii=3; end; tt=L/T; a1=A(1,ii+iC); b1=-A(2,ii+iC);
18 a2=A(3,ii+iC); b2=-A(4,ii+iC); Kp=a1/k*ttˆb1; Ti=T/(a2+b2*tt);
19 if key==3| key==4
20 a3=A(5,ii+iC); b3=A(6,ii+iC); Td=a3*T*ttˆb3;
21 end
22 else,
23 Kc=vars(5); Tc=vars(6); k=vars(7);
24 switch key

Table 6.8. Disturbance rejection PI controller parameters.

Range of L/T 0.1 − 1 1.1 − 2

Criterion ISE ISTE IST2E ISE ISTE IST2E

a1 1.279 1.015 1.021 1.346 1.065 1.076

b1 −0.945 −0.957 −0.953 −0.675 −0.673 −0.648

a2 0.535 0.667 0.629 0.552 0.687 0.650

b2 0.586 0.552 0.546 0.438 0.427 0.442

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

208 Chapter 6. PID Controller Design

Table 6.9. Disturbance rejection PID controller parameters.

Range of L/T 0.1 − 1 1.1 − 2

Criterion ISE ISTE IST2E ISE ISTE IST2E

a1 1.473 1.468 1.531 1.524 1.515 1.592

b1 −0.970 −0.970 −0.960 −0.735 −0.730 −0.705

a2 1.115 0.942 0.971 1.130 0.957 0.957

b2 0.753 0.725 0.746 0.641 0.598 0.597

a3 0.550 0.443 0.413 0.552 0.444 0.414

b3 0.948 0.939 0.933 0.851 0.847 0.850

25 case 2, Kp=0.361*Kc;Ti=0.083*(1.935*k+1)*Tc;
26 case 3, Kp=0.509*Kc; Td=0.125*Tc; Ti=0.051*(3.302*k+1)*Tc;
27 case 4, Kp=(4.437*k-1.587)/(8.024*k-1.435)*Kc;
28 Ti=0.037*(5.89*k+1)*Tc; Td=0.112*Tc;
29 end
30 end
31 [Gc,H]=writepid(Kp,Ti,Td,N,key);

The syntax of the function is

[Gc,Kp,Ti,Td,H]=optpid(key,typ,vars)

where key = 2, 3, 4 for PI, normal PID, and PID controllers with D in the feedback
path, respectively, and typ = 1, 2 for set-point and disturbance rejection, respectively.
The variable vars = [k, L, T, N, C], where C is the criterion type with C = 1, 2, 3
for ISE, ISTE, and IST2E criteria, respectively. The returned variables are Gc, the cascade
controller object, and Kp,Ti,Td are the PID controller parameters. H is returned, ifkey = 4,
as the equivalent feedback transfer function for the structure with the derivative in the
feedback path.

Example 6.12. Consider the plant model in Example 6.4. The optimal PI and PID con-
trollers can be designed using the following MATLAB statements:

>> G=tf(10,[1,10,35,50,24]); N=10; [k,L,T]=getfod(G);
f1=figure; f2=figure;
for iC=1:3

[Gc,Kp,Ti,Td]=optpid(2,1,[k,L,T,N,iC]);
figure(f1), G_c=feedback(G*Gc,1); step(G_c,10), hold on,
[Gc,Kp,Ti,Td]=optpid(3,1,[k,L,T,N,iC]);
figure(f2), G_c=feedback(G*Gc,1); step(G_c,10), hold on,

end

The relevant closed-loop step responses are shown in Figs. 6.18(a) and (b).

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.3. Other PID Controller Tuning Formulae 209

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

← ISE control
← ISTE control

← IST2E control

(a) PI control

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

(b) PID control

Figure 6.18. Closed-loop step responses of optimal controllers.

PID Design based on ultimate frequency and gain

When the crossover frequency ωc and the ultimate gain Kc are known, with Tc = 2π/ωc,
three types of PID controllers are summarized in Table 6.10, where κ = kKc is the nor-
malized gain of the plant model [70]. The values given were deduced from the relationship
between the FOPDT plant parameters and its ultimate gain and frequency.

The corresponding values for the PI controller are given in Table 6.11.
When the relay automatic tuning strategy is used, which will be discussed later in

this chapter, the oscillation frequency ω0 and the magnitude a0 can be measured. Then,
T0 = 2π/ω0 and K0 = 4h/(a0π). Assume that κ0 = kK0. ω0 and K0 are approximations
to ωc and Kc, but more accurate results can be obtained for the PID controller parameters
from Table 6.12.

The PI controllers for disturbance rejection can also be obtained with the direct use
of Table 6.13.

Improved gain-phase approach

The gain-phase assignment algorithm can be used to design a PID controller

Kp = m cos φ

| G(jωc) | = mKc cos φ, Td = tanφ+
√

4/α+ tan2φ

2ωc
, Ti = αTd (6.34)

Table 6.10. PID controller parameters for ISTE criterion.

PID Set-point Disturbance rejection D in feedback

Kp 0.509Kc
4.434κ − 0.966
5.12κ + 1.734

Kc
4.437κ − 1.587
8.024κ − 1.435

Kc

Ti 0.051(3.302κ + 1)Tc
1.751κ − 0.612
3.776κ + 1.388

Tc 0.037(5.89κ + 1)Tc

Td 0.125Tc 0.144Tc 0.112Tc

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

210 Chapter 6. PID Controller Design

Table 6.11. PI controller parameters for ISTE criterion.

PI Set-point Disturbance rejection

Kp
4.264 − 0.148κ

12.119 − 0.432κ
Kc

1.892κ + 0.244
3.249κ + 2.097

Kc

Ti 0.083(1.935κ + 1)Tc
0.706κ − 0.227

0.7229κ + 1.2736
Tc

Table 6.12. PID controller parameters for ISTE criterion for autotuning.

PID Set-point Disturbance rejection D on output

Kp 0.604K0
6.068κ0 − 4.273
5.758κ0 − 1.058

K0
2.354κ0 − 0.696
3.363κ0 + 0.517

K0

Ti 0.04(4.972κ0 + 1)T0
1.1622κ0 − 0.748
2.516κ0 − 0.505

T0 0.271κ0T0

Td 0.130T0 0.15T0c 0.1162T0c

Table 6.13. PI controller parameters for ISTE criterion for autotuning.

PI Set-point Disturbance rejection

Kp
1.506κ0 − 0.177
3.341κ0 + 0.606

K0
6.068κ0 − 4.273
5.758κ0 − 1.058

K0

Ti 0.055(3.616κ0 + 1)T0
5.352κ0 − 2.926

5.539κ05.536
T0

where α = 0.413(3.302κ + 1) or α = 1.687κ0. The constants φ and m can be obtained
from one of the following two cases:

• For the normalized gain κ,

φ = 33.8◦(1 − 0.97e−0.45κ), m = 0.614(1 − 0.233e−0.347κ). (6.35)

• If the frequency and the gain under automatic tuning are measured, the following
approach can be used:

φ = 33.2◦(1 − 1.38 e−0.68κ0), m = 0.613(1 − 0.262 e−0.44κ0). (6.36)

The MATLAB function optpid() can be used again to solve for the PID controller
parameters with the improved gain-phase method. The syntax of the function, for the particu-
lar design tasks with this algorithm, is [Gc,Kp,Ti,Td,H]=optpid(key,typ,vars)

where vars = [k, L, T, N, Kc, Tc, κ] are the relevant parameters of the plant model. As
before, if the value of key is selected as key = 4, the effective PID controller, with
derivative action in the feedback path, can be designed.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.3. Other PID Controller Tuning Formulae 211

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

(a) step responses

−360 −315 −270 −225 −180 −135 −90 −45 0
−40

−30

−20

−10

0

10

20

30

40

 6 dB
 3 dB

 1 dB

 0.5 dB
 0.25 dB

 0 dB

 −1 dB

 −3 dB

 −6 dB

 −12 dB

 −20 dB

 −40 dB

Nichols Chart

Open−Loop Phase (deg)

O
p
e
n
−
L
o
o
p

G
a
i
n

(
d
B
)

(b) Nichols charts

Figure 6.19. Responses for the optimal gain-phase margins design.

Example 6.13. Consider again the plant model in Example 6.4. The PID controller can be
designed using the following MATLAB statements:

>> G=tf(10,[1,10,35,50,24]); [Kc,pm,wc,wm]=margin(G);
Tc=2*pi/wc; kappa=dcgain(G)*Kc; [k,L,T]=getfod(G);
N=10; vars=[k,L,T,N,Kc,Tc,kappa];
[Gc,Kp,Ti,Td,H]=optpid(3,1,vars); G_c=feedback(G*Gc,1); step(G_c),
figure, nichols(G*Gc); grid; axis([-360,0,-40,40])

the controller is

Gc(s) = 6.4134
(

1 + 2.6276
s

+ 0.3512s

)
.

The closed-loop step response and the Nichols chart of the system are obtained as shown
in Figs. 6.19(a) and (b), respectively. It can be seen that the responses are satisfactory,
compared with the controllers designed using other approaches.

Example 6.14. Let us revisit the original Ziegler–Nichols tuning algorithm. We have seen
in Sec. 6.2 that the original Ziegler–Nichols parameter setting formula does not achieve a
very satisfactory PID control performance. In this example, we will show, via redesigning
the PID controller for the plant model in Example 6.4, a new Ziegler–Nichols parameter
setting procedure can give a much improved performance which is close to that achieved
by the optimum PID parameter setting method.

Before applying the original Ziegler–Nichols parameter setting formula, the optimal
reduced-order model is obtained first to extract the characteristics of the plant model. Then,
with this optimally reduced FOPDT model, a PID controller can be designed using the
Ziegler–Nichols algorithm. By the following MATLAB statements:

>> G=tf(10,[1,10,35,50,24]); Gr=opt_app(G,0,1,1); L=Gr.ioDelay;
T=Gr.den{1}(1)/Gr.den{1}(2); K=Gr.num{1}(2)/Gr.den{1}(2);
Gc=ziegler(3,[K,L,T,10]); Gc1=optpid(3,1,[K,L,T,10,2]);
step(feedback(G*Gc,1),feedback(G*Gc1,1))

the new Ziegler–Nichols PID controller and the optimum PID controller can be designed.
Their step responses are compared in Fig. 6.20. We can see that the new Ziegler–Nichols

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

212 Chapter 6. PID Controller Design

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

← optimum controller

← new Ziegler-Nichols tuning

Figure 6.20. Step responses comparison of two PID controllers.

parameter setting procedure gives a much improved performance compared with that pre-
sented in Example 6.4. In fact, this new Ziegler–Nichols PID controller performs similarly
to the optimum PID controller in terms of step response speed and overshoot.

6.4 PID Controller Tuning Algorithms for Other Types of
Plants

All the PID tuning algorithms discussed in the previous sections are based on the FOPDT
plant models; they cannot be used for many other plant models in practice. Agreat many PID
tuning algorithms have been collected in the handbook [71], where apart from the FOPDT-
based algorithms, tuning algorithms for other plant models are also given. Here only a few
PID controller algorithms are summarized, with their MATLAB implementations.

6.4.1 PD and PID Parameter Setting for IPDT Models

A widely encountered plant model is described by a mathematical description G(s) =
Ke−Ls/s, which is referred to as the integrator plus dead time (IPDT) model. This kind of
plant model cannot be controlled by the PD and PID controllers using the setting algorithms
given in the previous sections.

Since there already exists an integrator in the plant model, an extra integrator in the
controller is not required to remove a steady-state error to a step input, but it is needed to
remove the output error caused by a steady disturbance at the plant input. PD controllers may
also be used to avoid large overshoot. The mathematical models of PD and PID controllers
are, respectively,

GPD(s) = Kp(1 + Tds), G PID(s) = Kp

(
1 + 1

Tis
+ Tds

)
. (6.37)

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.4. PID Controller Tuning Algorithms for Other Types of Plants 213

11.5

Table 6.14. The coefficients of the controller for IPDT models.

criterion a1 a2 a3 a4 a5
ISE 1.03 0.49 1.37 1.49 0.59

ITSE 0.96 0.45 1.36 1.66 0.53
ISTSE 0.9 0.45 1.34 1.83 0.49

PD and PID parameter setting algorithms were presented in [72], based on various
performance indices, and given as

PD controller Kp = a1

KL
, Td = a2L,

PID controller Kp = a3

KL
, Ti = a4L, Td = a5L,

(6.38)

where for different criteria, the coefficients ai can be selected as shown in Table 6.14. The
following MATLAB function can be written to implement the above algorithms:

1 function [Gc,Kp,Ti,Td]=ipdtctrl(key,key1,K,L,N)
2 a=[1.03,0.49,1.37,1.49,0.59; 0.96,0.45,1.36,1.66,0.53;
3 0.9,0.45,1.34,1.83,0.49]; s=tf(’s’); Ti=inf;
4 if key==1
5 Kp=a(key1,1)/K/L; Td=a(key1,2)*L; Gc=Kp*(1+Td*s/(1+Td/N*s));
6 else
7 Kp=a(key1,3)/K/L; Ti=a(key1,4)*L; Td=a(key1,5)*L;
8 Gc=Kp*(1+1/Ti/s+Td*s/(1+Td/N*s));
9 end

In the function, key is the switch for PD and PID controller selections, with key = 1 for
PD, 2 for PID. The argument for key = 1 is to set for ISE, ITSE, and ISTSE selections.

6.4.2 PD and PID Parameters for FOIPDT Models

Another category of plant model is defined by a first-order lag and integrator plus dead time
(FOIPDT) whose mathematical model is

G(s) = Ke−Ls

s(Ts + 1)
.

Since an integrator is contained in the model, an extra integrator is not necessary in the
controller to remove the steady-state error to a set point change. Thus, a PD controller may
be used if there is no steady state disturbance at the plant. A PD controller setting algorithm
is included in [71, 73]:

Kp = 2
3KL

, Td = T. (6.39)

Also a PID setting algorithm is included in [71, 74] such that

Kp = 1.111T

KL2

1
[
1+(T/L)0.65

]2 , Ti = 2L

[

1+
(

T

L

)0.65
]

, Td = Ti

4
. (6.40)

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

214 Chapter 6. PID Controller Design

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

PID controller

PD controller

Figure 6.21. Comparisons of the PID and PD controllers.

A control design function foipdt() is written to implement the two algorithms,
where key is used to select the structure of the controller, i.e., 1 for PD and 2 for PID. If
the parameters K, L, T, N are known, the controller can immediately be designed.

1 function [Gc,Kp,Ti,Td]=foipdt(key,K,L,T,N)
2 s=tf(’s’);
3 if key==1
4 Kp=2/3/K/L; Td=T; Ti=inf; Gc=Kp*(1+Td*s/(1+Td*s/N));
5 else
6 a=(T/L)ˆ0.65; Kp=1.111*T/(K*Lˆ2)/(1+a)ˆ2;
7 Ti=2*L*(1+a); Td=Ti/4; Gc=Kp*(1+1/Ti/s+Td*s/(1+Td*s/N));
8 end

Example 6.15. Consider the plant model

G(s) = 1
s(s + 1)4 ,

where there exists an integrator and the rest of the model can be described by an FOPDT
model. Thus, the original model can be approximated by an FOIPDT model. The following
statements can be used to design PD and PID controllers. The step response of the closed-
loop systems are obtained as shown in Fig. 6.21.

>> s=tf(’s’); G1=1/(s+1)ˆ4; G=G1/s; Gr=opt_app(G1,0,1,1);
K=Gr.num{1}(2)/Gr.den{1}(2); L=Gr.ioDelay; T=1/Gr.den{1}(2);
[Gc1,Kp1,Ti1,Td1]=foipdt(1,K,L,T,10);
[Gc2,Kp2,Ti2,Td2]=foipdt(2,K,L,T,10);
step(feedback(G*Gc1,1),feedback(G*Gc2,1))

The controllers are

GPD(s)=0.3631
(

1+ 2.3334s

1+0.23334s

)
, GPID(s)=0.1635

(
1+ 1

7.9638s
+ 1.9910s

1+0.1991s

)
.

It can be seen from the control results that the PD controller is significantly better than the
PID controller. This is because the 180◦ lag given by two integrators makes good control
more difficult.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.5. PID_Tuner: A PID Controller Design Program for FOPDT Models 215

11.5

Table 6.15. The coefficients of the controller for unstable FOPDT models.

Criterion a1 b1 a2 b2 a3 b3 γ

ISE 1.32 0.92 4 0.47 3.78 0.84 0.95
ITSE 1.38 0.9 4.12 0.9 3.62 0.85 0.93

ISTSE 1.35 0.95 4.52 1.13 3.7 0.86 0.97

6.4.3 PID Parameter Settings for Unstable FOPDT Models

In practical control systems, the plant model may approximate an unstable FOPDTmodel, i.e.,

G(s) = Ke−Ls

Ts − 1
.

The following algorithms may be used to design the PID controller, [72].

Kp = a1

K
Ab1 , Ti = a2TAb2 , Td = a3T

[
1 − b3A

−0.02
]
Aγ , (6.41)

where A = L/T . For different criterion, the coefficients ai, bi, γ of the PID controller can
be obtained in Table 6.15. Based on the algorithm, a PID controller design function for
unstable FOPDT models can be written such that

1 function [Gc,Kp,Ti,Td]=ufolpd(key,K,L,T,N)
2 Tab=[1.32, 0.92, 4.00, 0.47, 3.78, 0.84, 0.95;
3 1.38, 0.90, 4.12, 0.90, 3.62, 0.85, 0.93;
4 1.35, 0.95, 4.52, 1.13, 3.70, 0.86, 0.97];
5 a1=Tab(key,1); b1=Tab(key,2); a2=Tab(key,3); b2=Tab(key,4);
6 a3=Tab(key,5); b3=Tab(key,6); gam=Tab(key,7); A=L/T;
7 Kp=a1*Aˆb1/K; Ti=a2*T*Aˆb2; Td=a3*T*(1-b3*Aˆ(-0.02))*Aˆgam;
8 s=tf(’s’); Gc=Kp*(1+1/Ti/s+Td*s/(1+Td/N*s));

6.5 PID_Tuner: A PID Controller Design Program for
FOPDT Models

Hundreds of PID parameter tuning algorithms have been collected in the handbook [71].
Many of the methods are based on the FOPDT plant models. Thus, a GUI is designed,
which can be used to design PID-type controllers, and also a closed-loop simulation for the
designed controllers can be obtained. With the interface, the following procedures can be
used to design PID controllers:

1. Enter pid_tuner under the MATLAB prompt. The interface in Fig. 6.22 is given,
which can be used to design PID-type controllers.

2. Click the Plant model button; a dialog box will be given to prompt you to enter the
plant model. Any single input–single output (SISO) continuous model, with or without
time delays, can be defined. The button Modify Plant Model can be used to modify
the plant models.

3. Once the plant model is specified, the Get FOPDT parameters button can be clicked
to extract the FOPDT parameters, i.e., to find the parameters K, L, T . Many different

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

216 Chapter 6. PID Controller Design

Figure 6.22. PID controller design interface.

methods can be used to extract the parameters, for instance, using the optimum fitting
methods. The fitting algorithms can be selected via the FOPDT model parameters
fitting list box.

4. With the K, L, T parameters, the controller can be designed. The controller type can
be selected by the combinations of the list boxes Choose controller type, Apply to,
and Tuning algorithm selection, which provides the algorithms in [75].

5. The Design Controller button can be used to design the relevant PID controller.
6. The Closed-loop Simulation button can be used to show the closed-loop step response

of the system under the controllers designed.

Example 6.16. For the plant model

G(s) = 1
(s + 1)6 ,

click Plant model to enter the model. The dialog box shown in Fig. 6.23 is displayed, and
the numerator, denominator, coefficient vectors, and delay constant can be entered. Then
click the Apply button to model the input procedure.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.5. PID_Tuner: A PID Controller Design Program for FOPDT Models 217

Figure 6.23. Dialog box of plant model input.

Figure 6.24. PID controller design and display.

To design a controller, the FOPDT parameters should be obtained first. The fitting
algorithms can be selected as the sub optimal reduction item; the button Get FOPDT
model can then be clicked to extract the model parameters, as shown in Fig. 6.24.

The controller can be obtained by the Design Controller button. For instance, the
Minimum IAE (Wang et al) item can be used to design the controller

Gc(s) = 0.936172
(

1 + 1
4.565340s

+ 1.062467s

)
.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

boo
2007
page

218 Chapter 6. PID Controller Design

Click the Closed-loop Simulation button to show the closed-loop step response. One
may click the Hold button to hold the results. The step responses under different controllers
can be displayed together. So, this feature can be used to compare different algorithms, as
shown in Fig. 6.24.

6.6 Optimal Controller Design
Optimal control is defined as the optimization of certain predefined performance indices.
For instance, commonly used performance indices can be the ones in (3.50). Sometimes,
parametric objective functions may be used, for example, the linear quadratic optimal reg-
ulator problem, where the two weighting matrices Q, R need to be defined. There is as yet
no universally accepted way to define these two matrices.

In this section, we first summarize and illustrate some solutions to unconstrained
and constrained optimization problems using MATLAB. Then the method can be applied
to optimal controller design problems. Finally, a MATLAB interface optimal controller
designer (OCD) for optimal controller design is presented.

6.6.1 Solutions to Optimization Problems with MATLAB

Unconstrained optimization problems

The mathematical formulation of the unconstrained optimization problem is

min
x

F(x), (6.42)

where x = [x1, x2, . . . , xn]T. The interpretation of the formula is: find the vector x such
that the objective function F(x) is minimized. If a maximization problem is treated, the
objective function can be changed to −F(x) such that it can be converted to a minimization
problem.

A MATLAB function fminsearch() is provided using the well-established sim-
plex algorithm [76]. The syntax of the function is

[x,fopt,key,c]=fminsearch(Fun, x0, OPT)

whereFun is a MATLAB function, an inline function, or an anonymous function to describe
the objective function. The variable x0 is the starting point for the search method. The
argument OPT contains further control options for the optimization process.

Example 6.17. If a function with two variables is given by z = f(x, y) = (x2−2x)e−x2−y2−xy

and the minimum point is required, one should first introduce a vector x for the unknown
variables x and y. One may select x1 = x and x2 = y. The objective function can be
rewritten as f(x) = (x2

1 − 2x1)e−x2
1−x2

2−x1x2 . The objective function can be expressed as
an anonymous function such that

>> f=@(x)[(x(1)ˆ2-2*x(1))*exp(-x(1)ˆ2-x(2)ˆ2-x(1)*x(2))];

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.6. Optimal Controller Design 219

If one selects an initial search point at (1, 1), the minimum point can be found with the
statements

>> x0=[0; 0]; x=fminsearch(f,x0.)

Then the solution obtained is x = [0.6110, −0.3055]T.

Constrained optimization problems

The general form of the unconstrained optimization problem is

min

x s.t.

Ax ≤ B
Aeqx = Beq
xm ≤ x ≤ xM
C(x) ≤ 0
Ceq(x) = 0

F(x) (6.43)

where x = [x1, x2, . . . , xn]T. The constraints are classified as linear equality constraints
Aeqx = Beq, linear inequality constraints Ax ≤ B, and nonlinear constraints Ceq(x) = 0
and C(x) ≤ 0. The upper and lower bounds of the optimization variables can also be
defined such that xm ≤ x ≤ xM.

The interpretation of the optimization problem is: find the vector x, which minimizes
the objective function F(x), while satisfying all the constraints.

A MATLAB function fmincon() can be used to solve constrained optimization
problems. The syntax of the function is

[x,fopt,key,c]=fmincon(Fun,x0,A,B,Aeq,Beq,xm,xM,CFun,OPT)

where Fun again could be M-functions, inline functions, or anonymous functions for the
objective function, and x0 is the starting search point. The nonlinear constraints can be
described by the MATLAB function CFun.

Example 6.18. Consider the following nonlinear programming problem:

min

x s.t.

x2
1+x2

2+x2
3−25=0

8x1+14x2+7x3−56=0

x1,x2,x3≥0

[1000 − x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3].

The objective function can be expressed with an anonymous function

>> f=@(x)[1000-x(1)*x(1)-2*x(2)*x(2)-x(3)*x(3)-x(1)*x(2)-x(1)*x(3)];

Also, the two constraints are equalities, one of which is nonlinear. The nonlinear
constraints can be described in the following MATLAB function, where two constraint
variables ceq and c are returned. Since there is no inequality constraint, the variable c
returns an empty matrix.

1 function [c,ceq]=opt_con(x)
2 ceq=x(1)*x(1)+x(2)*x(2)+x(3)*x(3)-25; c=[];

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

220 Chapter 6. PID Controller Design

The linear equality constraint can be expressed by the Aeq, Beq matrices, while the
linear inequality matrices A and B should be empty ones, since there is no linear inequalities
in the problem. Selecting an initial search position at x0 = [1, 1, 1]T, the problem can then
be solved using the following statements:

>> x0=[1;1;1]; xm=[0;0;0]; xM=[]; A=[]; B=[]; Aeq=[8,14,7]; Beq=56;
[x,f_opt,c,d]=fmincon(f,x0,A,B,Aeq,Beq,xm,xM,’opt_con’)

The optimum solution can then be found, where x∗ = [3.5121, 0.2170, 3.5522]T and fopt =
961.7151.

6.6.2 Optimal Controller Design

With the powerful tools provided in MATLAB, many optimal control problems can be
converted in to conventional optimization problems. With the above-mentioned functions,
some optimal controller problems can be easily solved. Although not allowing elegant
analytical solutions, numerical methods are extremely powerful practical techniques for
controller design.

Example 6.19. Assume that

G(s) = 10(s + 1)(s + 0.5)

s(s + 0.1)(s + 2)(s + 10)(s + 20)
.

The phase lead-lag controllers can be designed using the method in Sec. 5.1. Here opti-
mal controller design is explored. Integral-type criteria are very suitable for servo control
problems. Given a plant model, a Simulink block diagram can be established as shown in
Fig. 6.25(a), where the ITAE criterion can be evaluated as shown.

In order to minimize the ITAE criterion, the following MATLAB function can be
written to describe the objective function:

1 function y=c6optml(x)
2 assignin(’base’,’Z1’,x(1)); assignin(’base’,’P1’,x(2));
3 assignin(’base’,’Z2’,x(3)); assignin(’base’,’P2’,x(4));
4 assignin(’base’,’K’,x(5)); % assign variable into MATLAB workspace
5 [t,xx,yy]=sim(’c6moptm1.mdl’,3); y=yy(end); % evaluate objective function

1

time1

K(s+Z1)(s+Z2)

(s+P1)(s+P2)

Zero−Pole1

4(s+1)(s+0.5)

s(s+0.1)(s+10)(s+20)(s+2)

Zero−Pole
Step Scope

1
s|u|

(a) Simulink model (file: c6moptm1.mdl)
0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

(b) closed-loop response

Figure 6.25. Phase lead-lag controller and system response.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.6. Optimal Controller Design 221

The assignin() function can be used to assign the variables in the MATLAB workspace,
and the model parameters can be defined in the optimization variable vector x. The following
MATLAB statements can be used to solve the optimization problem:

>> x0=20*ones(5,1); x=fminsearch(’c6optm1’,x0)

and the parameters are returned in the variable x, from which the controller model can be
written as

Gc(s) = 243.77
(s + 53)(s + 66.58)

(s + 38.28)(s + 62.09)
.

Under this controller, the step response of the system is shown in Fig. 6.25(b).
In practical calculation, when the zero of the controller is very small, the computation

may become extremely slow. To solve the problem, a suitable constraint to ensure that
all the five variables do not become smaller than 0.01 can be introduced. The following
statements can then be used to solve the problem:

>> x=fmincon(’c6optm1’,x0,[],[],[],[],0.01*ones(5,1))

Based on the numerical optimization technique, an extra constraint can be introduced.
For instance, if one wants to reduce the overshoot such that σ ≤ 3%, a new Simulink model
can be established as shown in Fig. 6.26(a). The objective function can be rewritten as

1 function y=c6optm2(x)
2 assignin(’base’,’Z1’,x(1)); assignin(’base’,’P1’,x(2));
3 assignin(’base’,’Z2’,x(3)); assignin(’base’,’P2’,x(4));
4 assignin(’base’,’K’,x(5)); % Assign variables to MATLAB workspace
5 [t,xx,yy]=sim(’c6moptm2.mdl’,3); y=yy(end,1); % Evaluate objective function
6 if max(yy(:,2))>1.03, y=1.2*y; end % update objective function

It can be seen from the last sentence that if the overshoot is too large, one can increase the
objective function manually.

The following statements can be given to solve the problem, and the closed-loop step
response of the system is shown in Fig. 6.26(b).

>> x=fmincon(’c6optm2’,x0,[],[],[],[],0.01*ones(5,1))

2

1

time1

K(s+Z1)(s+Z2)

(s+P1)(s+P2)

Zero−Pole1

4(s+1)(s+0.5)

s(s+0.1)(s+10)(s+20)(s+2)

Zero−Pole
Step Scope

1
s|u|

(a) modified Simulink model (file:c6moptm2.mdl)
0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) closed-loop step response

Figure 6.26. Modified simulation model and response.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

222 Chapter 6. PID Controller Design

3

2

1

time1

K(s+Z1)(s+Z2)

(s+P1)(s+P2)

Zero−Pole1

4(s+1)(s+0.5)

s(s+0.1)(s+10)(s+20)(s+2)

Zero−Pole
Step ScopeSaturation

1
s|u|

Figure 6.27. The Simulink model with saturations (file: c 6moptm3.mdl).

The controller model

Gc2(s) = 161.4965
(s + 43.1203)(s + 55.7344)

(s + 28.4746)(s + 61.0652)

can be designed.

Considerations on implementation of the controller are often neglected in theoretical
control solutions. It can be seen that for a unit step input, this controller gives an initial
output of 200, which is too high. It could cause hardware problems with a bad design and
saturate the actuator leading to nonlinear operation. However, if saturation is included in
the actuator, the resulting response can be easily solved using numerical methods, since one
can simply add a saturation block in the Simulink model.

Example 6.20. Consider again the controller design problem. Assuming that the control
signal should be kept within ±20, the Simulink model can be modified as shown in Fig. 6.27,
and the objective function can be rewritten as

1 function y=c6optm3(x)
2 assignin(’base’,’Z1’,x(1)); assignin(’base’,’P1’,x(2));
3 assignin(’base’,’Z2’,x(3)); assignin(’base’,’P2’,x(4));
4 assignin(’base’,’K’,x(5)); % assign variables in MATLAB workspace
5 [t,xx,yy]=sim(’c6moptm3.mdl’,15); y=yy(end,1); % evaluate objective function
6 if max(yy(:,2))>1.03, y=1.4*y; end % update the objective function

The following statements can be used to search for the optimum controller for the
system:

>> x=fmincon(’c6optm3’,x0,[],[],[],[],0.01*ones(5,1))

and the controller

Gc(s) = 37.1595
(s + 142.6051)(s + 62.6172)

(s + 20.3824)(s + 27.6579)

can be designed. The output signal and the control signal under such a controller can be
obtained as shown in Fig. 6.28. It can be seen that the control results are satisfactory.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.6. Optimal Controller Design 223

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) output signal
0 5 10 15

−20

−10

0

10

20

(b) control signal

Figure 6.28. Step response of the system when saturations are introduced.

Figure 6.29. OCD interface.

6.6.3 A MATLAB/Simulink-Based Optimal Controller Designer and
Its Applications

From the examples in the previous section, using numerical optimization algorithms, optimal
controller design can be made simple. In this section, we will introduce a Matlab/Simulink-
based optimal controller designer (OCD) with some application examples.

The procedures for applying the OCD program are as follows:
1. Type ocd at the MATLAB prompt; the main interface is shown in Fig. 6.29. The

program can be used in optimal controller design.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

224 Chapter 6. PID Controller Design

2. A Simulink model can be established and the model should contain at least two
elements: the undetermined variable names and the outport reflecting the optimum
criterion. For instance, in the PI controller design problem, the two variables Kp and
Ki can be assigned. The ITAE criterion can be represented in the Simulink model as
outport 1.

3. Fill in the Simulink model name in the Select a Simulink model edit box.
4. Fill in the variable names to be optimized in the Specify Variables to be optimized

edit box, with variable names separated with commas.
5. Estimate the terminate time for the error to become zero and enter it in the Simulation

terminate time edit box.
6. Click Create File to automatically generate a MATLAB function optfun_*.m and

click Clear Trash to delete the temporary objective function files.
7. Click Optimize to start, the optimization process. The optimal variables can be

obtained. Sometimes, the button should be clicked again to ensure more accurate
optimum solutions. The functions fminsearch(), nonlin() and fmincon()
can be called automatically for parameter optimization.

8. The upper and lower bounds to the variables can also be used, and initial search point
can be specified, if necessary.

Example 6.21. Consider the FOIPDT-type plant model in Example 6.15; i.e., the plant
model is given by

G(s) = 1
s(s + 1)4 .

The Simulink model for the PID control, with ITAE descriptions, is established as shown
in Figure 6.30(a), and it is saved in the file c6mopt4.mdl.

Fill in the Simulink model name in the Select a Simulink model edit box, for instance,
fill in c6mopt4 for this example. The variable names to be optimized, Kp,Ki,Kd should
be entered in the SpecifyVariables to be optimized edit box, and enter 30 in the Simulation
terminate time edit box. Then click the Create File button to automatically generate the
MATLAB function to describe the objective function

1

1

s(s+1)(s+1)(s+1)(s+1)

Zero−Pole

Ki

s

Kd.s

0.01s+1

Step
Scope

1
s

Kp

|u|

(a) Simulink model (file: c6mopt4.mdl)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Step Response

Time (sec)

A
m
p
l
i
t
u
d
e

↓
← PID controller

PD controller

← optimum controller

(b) comparisons

Figure 6.30. PID control model and response comparisons.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.6. Optimal Controller Design 225

1 function y=optfun_2(x)
2 assignin(’base’,’Kp’,x(1));
3 assignin(’base’,’Ki’,x(2));
4 assignin(’base’,’Kd’,x(3));
5 [t_time,x_state,y_out]=sim(’c6mopt4.mdl’,[0,30.000000]);
6 y=y_out(end);

where the second, third, and fourth lines in the code will assign the variables in vector x
to the variables Kp, Ki, Kd in the MATLAB workspace. Simulation is then performed to
calculate the objective function.

Click the Optimize button to initiate the optimization process. In the meantime, the
scope window should be opened to visualize the optimization process. After optimization,
the optimum PID controller will be obtained as

Gc(s) = 0.2583 + 0.0001
s

+ 0.7159s

0.01s + 1

which minimizes the ITAE criterion. It can be seen that Ki = 0.0001 is very small, which
can be neglected, and thus a PD controller is sufficient for the system. The closed-loop step
response is shown in Fig. 6.30(b). It can be seen that the control response is highly superior
to the one obtained in Example 6.15.

Example 6.22. The OCD program is not restricted to simple PID controller problems. It
can also be used for complicated system models such as the cascade PI control system
shown in Fig. 2.11.

To solve the problem, the Simulink model shown in Fig. 6.31 can be established, and
saved as c6model2.mdl. Note that four undetermined parameters Kp1, Ki1, Kp2, Ki2
should be optimized. The ITAE criterion can be defined. Starting the OCD, the model name
c6model2 should be entered into the Select a Simulink model edit box, and in the Specify
Variables to be optimized edit box, Kp1,Ki1,Kp2,Ki2 should be filled in. Also, in the
Simulation terminate time edit box, one may fill in 0.6. Click the Create File to generate
the MATLAB function. One may design the controllers by clicking the Optimize button,
and the controllers, which minimize the ITAE criterion, can be found as Kp1 = 37.9118,

1
time

0.21
0.15s+1

130
s0.0067s+1

70

ThyristerStep

0.01s+1
0.0044

Speed with filter

Scope

Kp1.s+Ki1
s

Outer PI
Controller

1
s

Kp2.s+Ki2
s

Inner PI
Controller

0.212

0.01s+1
0.1

Filter

0.01s+1
0.1

Current with filter

|u|

Abs

Figure 6.31. Simulation model of cascade PI control (file: c6model2.mdl).

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

226 Chapter 6. PID Controller Design

0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

250

Figure 6.32. Optimal control of the system.

Ki1 = 12.1855, Kp2 = 10.8489, and Ki2 = 0.9591, i.e., the controllers are

Gc1(s) = 37.9118 + 12.1855
s

and Gc2(s) = 10.8489 + 0.9591
s

.

Under these controllers, the step response of the closed-loop system can be obtained
as shown in Fig. 6.32. It can be seen that the response is satisfactory.

It can be seen from the previous examples that the OCD program is quite versatile
in finding the optimal controllers. However, in some applications, the OCD may not find
a solution due to the poorly posed problem or because a good initial search point has not
been found. This can be a drawback in conventional optimization algorithms, but many
such problems can be avoided by intelligent use based on an understanding of the system
behavior.

The genetic algorithm (GA) [77] allows the optimization search from many initial
points in a parallel manner. The Genetic Algorithm Optimization Toolbox (GAOT) [78]
provides a series of MATLAB-based functions for solving optimization problems using
genetic algorithms. This toolbox is used with the OCD program, and the facility is useful
in solving problems where conventional optimization methods cannot easily find an initial
feasible search point. The GA Optimization Toolbox is the last list box in Fig. 6.29.

Example 6.23. Consider an unstable plant model

G(s)= s + 2
s4+8s3+4s2−s+0.4

.

By the direct use of the OCD program, a feasible PID controller cannot be designed. How-
ever, one may still establish a Simulink model as shown in Fig. 6.33, which is the same as
the previous examples.

In order to ensure that the control action is not too large, a saturation element can be
appended to the controller, with the saturation width of , = 5. From the OCD program,
with the GAOT selection, the optimal PID controller can be designed as

Gc(s) = 47.8313 + 0.2041
s

+ 55.3632s

0.01s + 1
.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.7. More Topics on PID Control 227

1
time

s
Ki(s)

Kd.s

0.02s+1

s+2

s +8s +4s −s+0.44 3 2
Step ScopeSaturation

1/s

Kp

|u|

Kp

approximate Kd

Ki

ITAE criterion

unstable plant

Figure 6.33. Simulink model for PID control (file: c6munsta.mdl).

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Figure 6.34. Simulation results for an unstable plant with a PID controller.

The step response of the closed-loop system under the optimal controller is shown in
Fig. 6.34. It can be seen that the PID controller can still be designed, with the help of GAs,
and the transient response is satisfactory.

6.7 More Topics on PID Control
6.7.1 Integral Windup and Anti-Windup PID Controllers

A Simulink model for the study of the phenomenon of integrator windup is shown in
Fig. 6.35.

The plant model is given by

G(s) = 10
s4 + 10s3 + 35s2 + 50s + 24

,

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

228 Chapter 6. PID Controller Design

3

Out3

2

Out2

1

Out1

num(s)

den(s)

plant

1

Ti.s

Transfer FcnStep
Saturation

Kp

Gain

Figure 6.35. Integrator windup demonstration (file: c6mwind.mdl).

0 1 2 3 4 5 6 7 8 9 10
0

2

4

t2

0 1 2 3 4 5 6 7 8 9 10
0
2
4
6

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

t1

output y(t)

control signal u(t)

integrator output yi(t)

Figure 6.36. Integrator windup demonstration.

and the parameters for the PI controller are given by Kp = 5.04 and Ti = 1.124. With
an actuator saturation nonlinear element given by um = 3.5, the related signals in the PI
controlled system are shown in Fig. 6.36. When there is an initial set-point change in r(t),
the error signal is initially so large that the control signal u(t) quickly reaches its actuator
saturation limit. Even when the output signal reaches the reference value at the time t1, which
gives a negative error signal due to the large value of the integrator output, the control signal
still remains at the saturation value um, which causes the output of the system to continuously
increase until it reaches the time t2, and the negative action of the error signal begins to have
effect. This phenomenon is referred to as the integrator windup action, which is unwanted
in control applications. Therefore, we need to briefly introduce different antiwindup PID
controllers for use in practice. We shall use Simulink for illustration.

An antiwindup PID controller is provided as an icon in the Simulink environment,
and the internal structure is shown in Fig. 6.37. The signal reflecting the actuator saturation
is fed into the integrator action, which is determined by a ratio 1/Tt . For instance, one
can simulate the PID control system in the previous example using the Simulink model as
shown in Fig. 6.38(a). For different Tt , the output signals are compared in Fig. 6.38(b).
It can be seen that for smaller values of Tt , the windup phenomenon can be reduced more
significantly.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.7. More Topics on PID Control 229

1
control signal

b

set point weighting

Saturation

Kp

ProportionalModified
PID action

1

Ti.s

Integrator

−Tds

Td/N.s+1

Derivative

1/Tt

Anti Windup Gain

2
system output

1
Set point

Figure 6.37. Anti-windup PID structure (file: c6awpid.mdl).

1
Out1

num(s)

den(s)
Transfer Fcn

Step

Saturation

Sp

y
u

Auti−windup
PID controller

(a) Simulink model (c6fpid.mdl)
0 1 2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

← Tt = 10

← Tt = 5
← Tt = 2

(b) the effect of Tt

Figure 6.38. Effect of anti-windup PI controllers.

PID
controller

relay
element

plant!
control

tuning

!

!

!

!
"

uc(t) u(t) y(t)

Figure 6.39. Structure of a relay automatic tuning PID controller.

6.7.2 Automatic Tuning of PID Controllers

An automatic tuning (also known as autotuning or autotuner) PID controller strategy is pro-
posed by Åström and Hägglund [61]. Now the commercial automatic tuning PID controllers
are available from most hardware manufacturers.

The structure of the relay-type of automatic tuning is shown in Fig. 6.39, and it can
be seen that the two modes are alternated by the use of switching. When the operator feels
the need to adjust the parameters of the PID controller, he or she can simply press a button

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

230 Chapter 6. PID Controller Design

relay
element plant! ! ! !

"

uc(t) e(t) u(t) y(t)

!

"

!

"
!$

#$

h

,!$

(b) typical relay element(a) relay control block diagram

Figure 6.40. Nonlinear model of relay control.

to switch the process to the tuning mode, and the parameters can be tuned automatically.
When this tuning task is completed, the process can be switched back to normal feedback
control mode.

Under the tuning mode, the system is equivalent to the structure shown in Fig. 6.40(a),
and the typical relay nonlinearity is shown in Fig. 6.40(b). Several approaches can be used
to determine the crossover frequency ωc and the ultimate gain Kc. The describing function
approach is the theoretical basis for relay autotuning analysis, and Tsypkin’s method (see
Atherton [51]) can also be applied as described below.

Determining ωc and Kc with the describing function method

In the describing function approach [51], one can approximately represent the static non-
linear element by an equivalent gain in analyzing the so-called limit cycles. Such a gain
is referred to as the describing function of the nonlinearity and is in fact input amplitude
dependent. For different nonlinear functions, the describing functions may also be different;
a comprehensive study of describing functions can be found in [51].

The limit cycle, or oscillation, can be approximately determined by finding the inter-
section of the Nyquist plot of the plant model with the negative reciprocal of the describing
function N(a), as illustrated in Fig. 6.41(a), which means that the conditions when the
oscillation occurs are

1 + N(a)G(s) |s=jωc= 0, i.e., G(jωc) = − 1
N(a)

. (6.44)

The describing function of the system with relay nonlinearity given in Fig. 6.40(b) is
that

N(a) = 4h

πa2

(√
a2 − ,2 − j,

)
, (6.45)

from which the negative reciprocal of the describing function N(a) is simply

− 1
N(a)

= − π

4h

√
a2 − ,2 − j

π,

4h
, (6.46)

which is just a straight line as shown in Fig. 6.41 (b).
The crossover frequency ωc and the ultimate gain Kc can be obtained. For simplicity,

assume that , = 0. Then, the describing function can be simplified to N(a) = 4h/(πa).
So, immediately, one has

Kc = 4h

πa
, Tc = 2π

ωc
. (6.47)

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.7. More Topics on PID Control 231

!

"

− 1
N(a) G(jω)

!

"

$

− 1
N(a)

Re

ImIm

Re

(b) describing function of relay(a) determination of oscillations

−π,

4h

Figure 6.41. Determination of the magnitude and frequency of oscillations.

Determining ωc and Kc with Tsypkin’s method

The describing function method is essentially based on the principle of fundamental har-
monic equivalence. Tsypkin’s method, on the other hand, can be used when more accurate
analysis of relay systems is required, where the higher-order harmonics need to be consid-
ered apart from the fundamental one, for relay nonlinearities.

The Fourier series expansion of the square wave signal, which is the output of the
relay action, can be written as

y(t) =
∞∑

n=1(2)

4h

nπ
sin nω(t − t1), (6.48)

where “(2)” represents a step of 2, i.e., only odd harmonics are considered since the relay
function is an odd function. The Fourier series expansion of the output signal can then be
written as

c(t) =
∞∑

n=1(2)

4h

nπ
gn sin[nω(t − t1) + φn] (6.49)

with gn and φn the magnitude and phase of the plant model, respectively, i.e., G(njω) =
gnejφn . If the external input to the system is 0, then x(t) = −c(t), and the switching point
satisfies x(t1) = δ, ẋ(t1) < 0. The locus A(ω) can be defined as

Re[AG(θ, ω)] =
∞∑

n=1(2)

[
VG(nθ) sin(nθ) + UG(nθ) cos(nθ)

]
, (6.50)

Im[AG(θ, ω)] =
∞∑

n=1(2)

[
1
n
VG(nθ) cos(nθ) − UG(nθ) sin(nθ)

]
, (6.51)

where G(njω) = UG(nω) + jVG(nω). Assume that t1 = 0. The magnitude and frequency
of the limit cycles can be solved from

Im[AG(0, ω) + AG(ω,t,ω)] = −πδ

2h
(6.52)

and with the constraints Re[AG(0, ω)−AG(ω,t,ω)] < 0. If the relay element is symmetrical,
then one has

Im[AG(0, ω)] = −πδ

4h
. (6.53)

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

232 Chapter 6. PID Controller Design

6.7.3 Control Strategy Selections

It has been pointed out in some references, such as [60], that PID controllers can be used
only for plants with relatively small time delay (or equivalent delays). When the delay
constant increases, the PID controller cannot guarantee good responses. In fact, apart from
the traditional PID control structure, other control strategies may also be used to deal with
such cases. This leaves us with the following question: In practical applications, what kind
of controller structure should be used to design a usable controller for a given plant model?

Such a question is well studied in [79], where the normalized parameters τ and κ

are introduced, from which different control strategies are suggested, as summarized in
Table 6.16, where apart from the τ and κ parameters, τ2 and κ2 are also introduced for the
plant model given by

G(s) = Kv

s(1 + sTv)
e−sL

with the relations

τ2=
L

Tv
, κ2=

lim
s→0

sG(s)

ωc|G(jωc)|
=

1
2π

KvKcTc, and τ2=

2
π

+atan
√

κ2
2 − 1

√
κ2

2 − 1
. (6.54)

It can be seen that Table 6.16, in some sense, can be used as a guide for choosing a
suitable controller structure for a given plant model.

Table 6.16. Controller selection from the plant model.

Ranges of τ or κ No precise Precise control needed

control
necessary

High
noise

Low
saturation

Low measure-
ment noise

τ > 1, κ < 1.5 I control I+B+C PI+B+C PI+B+C

0.6 < τ < 1

1.5 < κ < 2.25

I or
PI control

I+A PI+A
PI+A+C or
PID+A+C

0.15 < τ < 0.6

2.25 < κ < 15
PI control PI PI or PID PID

τ < 0.15, κ > 15or

τ2 > 0.3, κ2 < 2

P or PI
control

PI PI or PID PI or PID

τ2 < 0.3, κ2 > 2 PD+E F PD+E PD+E

A represents forward compensation suggested

B represents forward compensation necessary

C represents dead-zone compensation suggested

D represents dead-zone compensation necessary

E represents set-point weighting necessary

F represents for pole placement

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.7. More Topics on PID Control 233

Problems

1. For the plant models

(a) Ga(s) = 1
(s + 1)3 , (b) Gb(s) = 1

(s + 1)5 , (c) Gc(s) = −1.5s + 1
(s + 1)3 ,

design PID (or PI) controllers using different design algorithms from this chapter and
compare the closed-loop behaviors of the controlled systems.

2. Find the FOPDT approximations to the plant models given by

(a) G(s) = 12(s2 − 3s + 6)

(s + 1)(s + 5)(s2 + 3s + 6)(s2 + s + 2)
,

(b) G(s) = −5s + 2
(s + 1)2(s + 3)3 e−0.5s,

(c) G(z) = 1.0569×10−5(z+18.42)(z+1.841)(z+0.3406)(z+0.03405)

(z−0.8025)(z−0.7866)(z−0.7711)(z−0.7558)(z−0.6703)
, T =0.1,

using various algorithms discussed in this chapter. Compare the closeness of the
approximation using relevant time and frequency domain analysis techniques.

3. Investigate the disturbance rejection properties of the controllers designed for the plants
in Problem 1. Assume that the disturbances are added in the steady-state responses.
If any of the controllers does not perform well for disturbance rejection, design a new
PID controller to improve the disturbance rejection performance and check whether
the new PID controller is suitable for set-point control.

4. For different PID controllers, analyze the compensated systems with time and fre-
quency domain tools. When the derivative term in the controller is disabled, what will
happen with the control performance?

5. Using the PID tuner program, compare the PID controllers designed from different
design approaches for the plant model

G(s) = 1
(s + 1)6 ,

and find a good PID controller.

6. Construct a Simulink model for PID control system structures with the plant model
containing a pure delay term. Design different PID controllers for the plant models
given below:

(a) Ga(s) = 1
(s + 1)(2s + 1)

e−s, (b) Gb(s) = 1
(17s + 1)(6s + 1)

e−30s,

(c) Gc(s) = s + 2
(s + 1)(4s + 1)

e−0.1s, (d) G(z) = 0.01752z + 0.01534
z2 − 1.637z + 0.6703

z−10, T = 0.2.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

234 Chapter 6. PID Controller Design

Compare the simulation results with the approximate results when the pure delay term
is replaced by a Padé approximation. also try to analyze the system under Smith
predictor control.

7. Design PID controllers for the plants

(a) G(s) = 15
s(s + 1)(s + 2)2(s + 5)

, (b) G(s) = 5(s − 5)

s(s + 5)4 .

8. Solve the unconstrained optimization problem

min
x

100(x2 − x2
1)

2 + (1 − x1)
2 + 90(x4 − x2

3) + (1 − x2
3)

2

+10.1
[
(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1).

9. Solve the constrained optimization problems

(a) min

x s.t.

x1+x2≤0

−x1x2+x1+x2≥1.5

x1x2≥−10

−10≤x1,x2≤10

ex1(4x2
1 + 2x2

2 + 4x1x2 + 2x2 + 1),

(b) max

x s.t.

0.003079x3
1x

3
2x5−cos3 x6≥0

0.1017x3
3x

3
4−x2

5 cos3 x6≥0

0.09939(1+x5)x
3
1x

2
2−cos2 x6≥0

0.1076(31.5+x5)x
3
3x

2
4−x2

5 cos2 x6≥0

x3x4(x5+31.5)−x5[2(x1+5) cos x6+x1x2x5]≥0

0.2≤x1≤0.5,14<≤x2≤22,0.35≤x3≤0.6

16≤x4≤22,5.8≤x5≤6.5,0.14≤x6≤0.2618

1
2 cos x6

[
x1x2(1 + x5) + x3x4

(
1 + 31.5

x5

)]
.

10. Using ITAE, IAE, and ISE criteria, design optimal PID controllers for the open-loop
plants

(a) Ga(s) = 1
(s + 1)(2s + 1)

e−s, (b)Gb(s) = 1
(17s + 1)(6s + 1)

e−30s

and comments on which criterion will usually lead to the best control results.

11. For a time varying plant model ÿ(t) + e−0.2t ẏ(t) + e−5t sin(2t + 6)y(t) = u(t), design
an optimal PI control which minimizes the ITAE criterion. Analyze the closed-loop
behavior of the system.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

un
co

rre
cte

d p
ro

of
s

book
2007/8
page 2

6.7. More Topics on PID Control 235

12. For the plant model

G(s) =
1 + 3e−s

s+1

s + 1
,

design an optimal PID controller and analyze the step response of the closed-loop
system.

13. In the OCD examples, the selection of simulation terminate time tf is quite important.
Please summarize how the tf should be selected.

Copyright ©2007 by the Society for Industrial and Applied Mathematics.
This electronic version is for personal use and may not be duplicated or distributed.

From "Linear Feedback Control" by Dingyu Xue, YangQuan Chen, and Derek P. Atherton.
This book is available for purchase at www.siam.org/catalog.

