Linearization of Nonlinear Models

* Most chemical process models are nonlinear, but
they are often linearized to perform a simulation and
stability analysis.

e Linear models are easier to understand (than
nonlinear models) and are necessary for most control
system design methods.



Single Variable Example

A general single variable nonlinear model

The function f(x) can be approximated by a Taylor series
approximation around the steady-state operating point (X,)
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Neglect the quadratic and higher order terms

()=~ f(xs)x—xs)
At steady-state

The partial derivative of f(x) with respect to X,
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Since the derivative of a constant (x,) is zero
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We are often interested in deviations In a state from a steady-
state operating point (deviation variable)
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Write in state-space form
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One State Variable and One Input Variable

« Consider a function with one state variable and one input variable
_dx
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* Using a Taylor Series Expansion for f(x,u)
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Using deviation variables, X=x-x, and t=u-u
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Write in state-space form
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If there is a single output that is a function of the state and input

y =9(x,u)
Perform a Taylor series expansion and truncate high order terms
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Linearization of Multistate Models

e Two-state system

g
><1=d—):1= f, (X, %, U)

Y =9(X, %;,U)
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 Perform Taylor series expansion of the nonlinear functions and

neglect high-order terms
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For the linearization about the steady-state
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We can write the state-space model
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Generalization

« Consider a general nonlinear model with n state variables, m input
variables, and r output variables

)'(1 — fl(xl’“"xn’ul"”’um)
: Vector notation:

)'(n:fn(xl’...,xn,ul’...,um) X:f(X,U)
Yy = Gy (X s X, Uy, ey U y =9g(x,u)

yr — gr()(l,...’xn’ul,...’um)
 Elements of the linearization matrices

State-space form:
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Example: Interacting Tanks

 Two interacting tank in series with outlet flowrate being function of
the square root of tank height
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 Modeling equations
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Assume only the second tank height is measured. The output, in
deviation variable formis y =h,- h,,

There are two state variables, one input variable, one one output

variable
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The element of the A (Jacobian) and B matrices
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* Only the height of the second tank is measured

y=g(h,h,F)=h,—hy

 The state-space model is
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Interpretation of Linearization

e Consider the single tank problem (assume F is constant)
dh_ F R
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* Linearization f(hF)= O—l—lo(h—hs)
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Exercise: interacting tanks

 Two interacting tank in series with outlet flowrate being function of
the square root of tank height

— Parameter values

Rl—ZSﬁ R _ 51 A =5ft> A, =10ft°
“min % /6 min
— Input variable F =5 ft3/min

— Steady-state height values : h, =10, h,,= 6

« Perform the following simulation using state-space model

— What are the responses of tank height if the initial heights are
h,(0)=12 ft and h,(0)=7 ft ?

— Assume the system is at steady-state initially. What are the
responses of tank height if

e Fchangesfrom5to 7 ft3/minatt=0
* F has periodic oscillation of F =5 + sin(0.2t)
 F changes from 5to 4 ft3/minatt =20



Stability of State-Space Models

A state-space model is said to be stable if the response x(t) is
bounded for all u(t) that is bounded

Stability criterion for state-space model

— The state-space model will exhibit a bounded response x(t)
for all bounded u(t), if and only if all of the eigenvalues of A
have negative real parts

(the stability is independent matrices B and C)

Single variable equation X =aXx has the solution

x(t) =e'x(0) = stableif a<0

The solution of X =Ax is X(t) =€*'x(0)
— Stable if all of the eigenvalues of A are less than zero
— The response x(t) is oscillatory if the eigenvalues are complex



Exercise

« Consider the following system equations

X, =—0.9% + X,
X, = —2X%,
Find th f x(t) for x(0) = ' d x(0) = ~0-0o47
— Find the responses of x(t) for 1o an = 081
(slow subspace v.s. fast subspace)
« Consider the following system equations
X = 2% X%
X, = 2% ~ X%
_ 0.2703 0.8719
— Find the responses of x(t) for x(0) = and x(0) =
—0.9628 0.4896

(stable subspace v.s. unstable subspace)

Note: Find eigenvalue and eigenvector of A
>> [V, D] = eig(A)



