
Neural Network Based
Control System Design

TOOLKIT

Version 2
For Use with MATLAB�

Magnus Nørgaard

Department of Automation
Department of Mathematical Modelling

Technical Report 00-E-892, Department of Automation

Technical University of Denmark

Release Notes

Neural Network Based
Control System Design

 Toolkit

Version 2.0

Department of Automation, Technical University of Denmark, January 23, 2000

This note contains important information on how the present set of tools is to be installed and
the conditions under which it may be used. Please read it carefully before use.

It is important that version 2.0 of the NNSYSID toolbox (Neural Network based SYStem
IDentification) has been installed in advance.

INSTALLING THE TOOLKIT

° The present version of the toolkit (version 2) is provided for use with MATLAB
5.3 or higher. It has been tested under Windows NT/98, Linux, and HP-UX.

° The entire toolkit is implemented as ordinary m-files and thus it should work

equally well on all hardware platforms. A fast computer is, however, highly
recommended.

° No “official” MathWorks toolboxes are necessary for being able to use NNCTRL,

but the Control System Toolbox is used in one of the demonstration programs
(“lintest”). Although not a requirement, it is definitely an advantage if SIMULINK
is available.

° When properly installed, the structure of the toolkit is as follows:

• NNCTRL
 Basic directory containing different Readme-files and the following three

subdirectories:

• CTRLTOOL
The actual toolkit functions and script-files.

• CTRLDEMO

Initialization files, SIMULINK models, and mat-files used for
demonstration.

• TEMPLATE

 “Templates” for the initialization files which are called by the
programs in the CTRLTOOL directory.

 Your MATLAB path must include the directory CTRLTOOL as well as the

directory containing the NNSYSID toolbox:

 >> path(path,’/xx/xx/NNCTRL20/CTRLTOOL’)
 >> path(path,’/xx/xx/NNSYSID20’)

 If the tools are going to be used on a regular basis it is recommended that the path

statements are included in ones personal startup.m file (see the manual for
MATLAB).

 During normal use one begins by copying the initialization file associated with

the desired control system from the TEMPLATE directory to the working
directory. The file must then be modified to comply with the application under
consideration. Typical working procedures can be seen by running the
demonstration programs. Furthermore, the different text files found in the
NNCTRL20 directory provide supplementary information on this matter.

 When running the demonstration programs the working directory must be the

directory NNCTRL20/CTRLDEMO.

° The checks for incorrect program/function calls are not very thorough and

consequently MATLAB will often respond with quite incomprehensible error
messages when a program or function is incorrectly invoked.

CONDITIONS/ DISCLAIMER

By using the toolbox the user agrees to all of the following:
° If one is going to publish any work in which this toolkit has been used, please

remember it was obtained free of charge and include a reference to this technical
report (M. Nørgaard: ”Neural Network Based Control System Design Toolkit, ver.
2” Tech. Report. 00-E-892, Department of Automation, Technical University of
Denmark, 2000).

° Magnus Nørgaard and the Department of Automation do not offer any support for

this product whatsoever. The toolkit is offered free of charge - take it or leave it!

° The toolkit is copyrighted freeware by Magnus Nørgaard/Department of

Automation, DTU. It may be distributed freely unmodified. It is, however, not
permitted to utilize any part of the software in commercial products without prior
written consent of Magnus Nørgaard, The Department of Automation, DTU.

° THE TOOLKIT IS PROVIDED “AS-IS” WITHOUT WARRENTY OF ANY

KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRENTIES OR CONDITIONS OF MECHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MAGNUS
NØRGAARD AND/OR THE DEPARTMENT OF AUTOMATION BE LIABLE
FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES OF ANY KIND, OR DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA, OR PROFITS, WHETHER OR NOT MN/IAU
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES,
AND/OR ON ANY THEORY OF LIABILITY ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

MATLAB is a trademark of The MathWorks, Inc.
MS-Windows is a trademark of Microsoft Coporation.
Trademarks of other companies and/or organizations mentioned in this documentation appear
for identification purposes only and are the property of their respective companies and/or
organizations.

Magnus Nørgaard
Department of Automation, Building 326
Technical University of Denmark
2800 Kgs. Lyngby
Denmark
e-mail:toolbox@magnusnorgaard.dk

1 Tutorial
This manual documents an engineering tool for design and simulation of control systems for processes
that are nonlinear and difficult to model in a deductive fashion. The approach to the problem has been
the typical system identification approach to model based control of an unknown process:

1. System identification. That is, to infer a neural network model of the process to be controlled from

a set of data collected in an experiment with the process.

2. Based on the identified model, one or more controllers are designed (these may be neural networks

as well). Run some simulations to tune the design parameters and select the controller that appears
to be most suitable for the application.

3. Implementation on a real-time platform and application to the real process.

In practice the three stages are not necessarily completely independent, and the controller is designed
in a more iterative fashion.

While the NNSYSID toolbox described in Nørgaard (2000) was explicitly designed for solving the
system identification task, the NNCTRL toolkit has been developed to assist the control engineer in
solving the second task. The toolkit is developed in MATLAB due to the excellent data visualization
features and its support for simulation of dynamic systems. In addition, it has been a major motivation
that MATLAB is extremely popular in the control engineering community. Apart from the NNSYSID
toolbox it is also an advantage if SIMULINK is available. If this is not present, MATLAB’s built-in
ODE solver is used instead.

The NNCTRL toolkit provides concepts where a network is used directly as the controller as well as
indirect designs that are based on a neural network process model. The concepts supported by the
toolkit include: Direct inverse control, internal model control, feedforward control, optimal control,
feedback linearization, nonlinear generalized predictive control, and control based on instantaneous
linearization. The toolkit is intended to be used primarily on time-invariant, single-input, single-output
(SISO) processes.

The NNCTRL toolkit has been given a flexible structure to accommodate incorporation of the user’s
personal neural network architectures and control system designs. Since the entire toolkit has been
implemented as ordinary ‘m-files’ it is very easy to understand and modify the existing code if desired.
This is an attractive feature if the designs provided in advance are not considered sufficient for the
applications under consideration or if the user would like to test new ideas.

First the manual describes the fundamental program structure shared by the different neural network
based control systems and training algorithms. Subsequently an example is given of how the user

1. Tutorial

 1-2

specifies the design parameters associated with a given application. Finally the different functions in
the toolkit are presented by category in accordance with the type of control system to which they
belong.

1.1 THE BASIC FRAMEWORK

All the different control systems have been implemented within the same framework. This framework
is composed of different standard elements such as reading a design parameter file, variable
initialization, generating a reference signal, process simulation, a constant gain PID controller, data
storage, data visualization, and more. The control systems can be divided into two fundamentally
different categories:

• Direct design: the controller is a neural network.

• Indirect design: The controller is not itself a neural network, but it is based on a neural

network model of the process.

The program structure is slightly different for each of the two categories. To illustrate the difference
they are shown in fig. 1 and fig. 2, respectively.

Design parameters

Initializations
Main loop begin

Compute reference
Compute output from process

(Update weights)
Compute control input

T ime updates
End loop

Plot simulation results

Simulink, Matlab
or neural net
model

A

B

C

Figure 1. Program structure for the direct design (i.e., the controller is a neural network). In some
cases it is possible to train the controller on-line and for this reason a step called: “update weights”
has been included.

1. Tutorial

NNCTRL Toolkit User’s Guide 1-3

Design parameters

Initializations
Main loop begin

Compute reference
Compute output from process

Design controller
Compute control input

T ime updates
End loop

Plot simulation results

Simulink, Matlab
or neural net
model

B

C
A

Figure 2. Program structure for the indirect design, i.e., when the controller is based on a neural
network model of the process.

Each of the boxes in Fig. 1 and Fig. 2 specifies a MATLAB script file or function. The three basic
components are:

A) A function describing the process to be controlled. The process can be specified as a SIMULINK

model, a MATLAB function containing the differential equations, or a neural network model of the
process. The SIMULINK and MATLAB options are of course relevant only when a mathematical
model of the process is available in advance.

B) A MATLAB script file containing design parameters and variables to be initialized by the user. The

initializations that are typically required include: choice of reference signal, sampling frequency,
name of SIMULINK/MATLAB function implementing the process, PID or neural network based
controller, design parameters for the controller. This file has a prespecified name and format that is
associated with the type of control system. The name is always concluded by the letters init.m (e.g.,
invinit.m in direct inverse control and npcinit.m in nonlinear predictive control). A typical
NNCTRL session is initiated by copying a “template” initialization file to the working directory.
This file is then modified to comply with the application under consideration.

C) The main program which automatically reads the initialization file and simulates the process. This

program usually contains the letters con.m in its name to specify that it is the control system
simulation program (for example invcon.m in direct inverse control and optcon.m in optimal
control). It should be emphasized that the program structure does not always follow the patterns
shown in fig. 1 and fig. 2 exactly, but that small variations may occur.

1.2 A TYPICAL INITIALIZATION FILE

During normal operation the user will only need to modify an initialization file containing the basic
design parameters and initializations for the simulation/training. More experienced users may also
wish to modify the actual simulation programs to incorporate their personal algorithms, but this topic
is not covered here. As an example of a typical initialization file, the file used for simulation of
nonlinear predictive control is shown on the following page. Subsequently the different design
parameters are discussed.

1. Tutorial

 1-4

% ---------- Switches -----------
regty ='npc'; % Controller type (npc, pid, none)
refty ='siggener'; % Reference signal(siggener/<var.name>)
simul ='simulink'; % Control object spec.(simulink/matlab/nnet)

regty defines the type of controller. It is possible to make a complete open-loop simulation (‘none’),
to use a constant gain PID-controller (‘pid’) or, in this case, a generalized predictive control design
based on a neural network predictor for the process (‘npc’).

% -------------------------------> NPCINIT.M <------------------------------

% ---------- Switches -----------
regty ='npc'; % Controller type (npc, pid, none)
refty ='siggener'; % Reference signal (siggener/<var. name>)
simul ='simulink'; % Control object spec. (simulink/matlab/nnet)

% ---------- Initializations -----------
Ts = 0.2; % Sampling period (in seconds)
samples = 300; % Number of samples in simulation
u_0 = 0; % Initial control input
y_0 = 0; % Initial output
ulim_min = -Inf; % Minimum control input
ulim_max = Inf; % Maximum control input

% -- System to be Controlled (SIMULINK) –
integrator= 'ode45'; % Name of dif. eq. solver (f. ex. ode45 or ode15s)
sim_model = 'spm1'; % Name of SIMULINK model

% --- System to be Controlled (MATLAB) --
mat_model = 'springm'; % Name of MATLAB model
model_out = 'smout'; % Output equation (function of the states)
x0 = [0;0]; % Initial states

% ----- Neural Network Specification ------
% "nnfile" must contain the following variables which together define
% an NNARX model:
% NN, NetDef, W1, W2
% (i.e. regressor structure, architecture definition, and weight matrices)
nnfile = 'forward'; % Name of file containing the neural network model

% ------------ Reference filter ---------------
Am = [1.0 -0.7]; % Denominator of filter
Bm = [0 0.3]; % Numerator of filter

% ---------- GPC initializations -----------
N1 = 1; % Minimum output horizon (must be equal to time delay!)
N2 = 7; % Maximum output horizon (>= nb)
Nu = 2; % Control horizon
rho = 0.03; % Penalty factor on differenced control signal

% -- Minimization algorithm initialzations -
% maxiter: Maxiumum number of Levenberg-Marquardt/Quasi-Newton iteratons.
% delta : If the 2-norm of the difference to the previous iterate is smaller
% than 'delta', the algorithm is terminated.
% initval: A string which will be evaluated by npccon1/2. To avoid problems with
% local minima, different initial values of the most future component
% of the 'sequence of future controls' can be initialized differenly.
% I.e. the minimization algorithm is executed once for each element
% in 'initval'. Use initval = '[upmin(Nu)]' as default.
maxiter = 5; % Max. number of iterations to determine u
delta = 1e-4; % Norm-of-control-change-stop criterion
initval = '[upmin(Nu)]';

% ----------- Reference signal -------------
dc = 0; % DC-level
sq_amp = 3; % Amplitude of square signals (row vector)
sq_freq = 0.1; % Frequencies of square signals (column vector)
sin_amp = [0]; % Amplitude of sine signals (row vector)
sin_freq= [0]'; % Frequencies of sine signals (column vector)
Nvar = 0'; % Variance of white noise signal

% -- Constant Gain Controller Parameters --
K=8; % PID parameters
Td=0.8; % PID
alf=0.1; % PID
Wi=0.2; % PID (1/Ti)

% ------ Specify data vectors to plot -------
% plot_a and plot_b must be cell structs containing the vector names in strings
plot_a = {'ref_data','y_data'};
plot_b = {'u_data'};

1. Tutorial

NNCTRL Toolkit User’s Guide 1-5

refty defines the type of reference trajectory. It is possible to use a signal generator (‘siggener’)
which can produce square waves, sinusoidals and white noise. Alternatively one can specify the name
of a vector containing the desired reference trajectory (for example, refty=‘myref’). If the latter
option is used, the vector must exist in the workspace or be defined elsewhere in the initialization file.

simul specifies the “tool” used for modelling the process. There are three possibilities: a SIMULINK
model (‘simulink’), a MATLAB model (‘matlab’), or a neural network model (‘nnet’).

% ---------- Initializations -----------
Ts = 0.2; % Sampling period (in seconds)
samples = 300; % Number of samples in simulation
u_0 = 0; % Initial control input
y_0 = 0; % Initial output
ulim_min = -Inf; % Minimum control input
ulim_max = Inf; % Maximum control input

Ts is the sampling period in seconds, and samples specifies the number of samples to be simulated.
The control input and system output corresponding to the initial state can be specified in the variables
u_0 and y_0. ulim_min and ulim_max can be used for imposing constraints on the control input.

% -- System to be Controlled (SIMULINK) --
integrator= 'ode45'; % Name of dif. eq. solver (f. ex. ode45 or ode15s)
sim_model = 'spm1'; % Name of SIMULINK model

If simul=‘simulink’ the program will simulate the “process” specified in a SIMULINK diagram
with the name defined in sim_model. The SIMULINK block must have an inport specifying the input
and an outport specifying the output, but apart from this there are no constraints on how the model is
built. The variable integrator contains the name of the ODE solver. ‘ode45’ is the one used most
often. The reader is referred to the MATLAB manuals for more details on the different ODE solvers.

The picture below shows the SIMULINK model used in the demos.

*

Product

s
1

Integrator1

s
1

Integrator2

1
Outport

+
−
−
−

Sum

1
Inport

 .
x2=x1 y=x1

.
x2

% --- System to be Controlled (MATLAB) --
mat_model = 'springm'; % Name of MATLAB model
model_out = 'smout'; % Output equation (function of the states)
x0 = [0;0]; % Initial states

1. Tutorial

 1-6

If simul=‘matlab’ the program will simulate the “process” defined by the two MATLAB files
defined in mat_model (the differential equations) and model_out (the output as a function of the
states).

For example:

and:

x0 is a vector specifying the initial states.

It is important to include the global ugl; statement (ugl is short for “u global”) in the MATLAB
function containing the differential equations describing the model. This is to comply with the format
required for passing the control signal to a function called by MATLAB’s differential equation solver
ode45. The ‘ode45’ solver has been pre-selected. If the user prefers another ODE solver, the name of
this should be inserted in the main program.

% ----- Neural Network Specification ------
% "nnfile" must contain the following variables which together define
% an NNARX model:
% NN, NetDef, W1, W2
% (i.e. regressor structure, architecture definition, and weight matrices)
nnfile = 'forward'; % Name of file containing the neural network model

The predictive controller requires a neural network model to predict the future outputs. This network
must be a NNARX (or NNOE) model created with the NNSYSID-toolbox. Regressor structure (NN),
network architecture (NetDef) and weight matrices (W1 and W2) must be saved in a file. The name
of the file name must be specified in the variable nnfile. If neither a SIMULINK model nor a
MATLAB model of the process exists, the network model can also be used for simulating the process.

% ------------ Reference filter ---------------
Am = [1.0 -0.7]; % Denominator of filter
Bm = [0.3]; % Numerator of filter

It is possible to filter the reference trajectory if desired. The filter’s transfer function is specified in the
polynomials Am and Bm. The specified choice corresponds to:

 r t
q

r t()
.
.

()=
− −

0 3
1 0 7 1

% ---------- GPC initializations -----------
N1 = 1; % Min. prediction horizon (must equal the time delay!)
N2 = 7; % Max. prediction horizon (>= nb)
Nu = 2; % Control horizon
rho = 0.03; % Penalty factor on differenced control signal

function xdot=springm(t,x)
global ugl;
xdot = [x(2) ; -x(1)-x(2)-x(1)*x(1)*x(1)+ugl];

function y=smout(x);
y = x(1);

1. Tutorial

NNCTRL Toolkit User’s Guide 1-7

%-- Minimization algorithm initialzations -
%maxiter: Maxiumum number of Levenberg-Marquardt/Quasi-Newton iteratons.
%delta : If the 2-norm of the difference to the previous iterate is smaller
% than 'delta', the algorithm is terminated.
%initval: A string which will be evaluated by npccon1/2. To avoid problems with
% local minima, different initial values of the most future component
% of the 'sequence of future controls' can be initialized differenly.
% I.e. the minimization algorithm is executed once for each element
% in 'initval'. Use initval = '[upmin(Nu)]' as default.
maxiter = 5; % Max. number of iterations to determine u
delta = 1e-4; % Norm-of-control-change-stop criterion
initval = '[upmin(Nu)]';

If the nonlinear generalized predictive control strategy has been selected by setting regty=‘npc’ the
design parameters must be specified in N1, N2, Nu, and rho:

 [] []��
==

−+∆++−+=
uN

i

N

Ni

ituityitrtUtJ
1

22
5)1()(ˆ)())(,(

2

1

ρ

The GPC-criterion can be minimized using two different schemes: a Quasi-Newton algorithm
(obtained by running the program npccon1) or a Levenberg-Marquardt algorithm (obtained by running
npccon2). maxiter specifies the maximum number of iterations and delta defines the stopping
criterion. The criterion may have several local minima and consequently it may be desireable to
specify different starting points for the minimization algorithm. This can be done in the vector
initval.

1. Tutorial

 1-8

% ----------- Reference signal -------------
dc = 0; % DC-level
sq_amp = [3]; % Amplitude of square signals (row vector)
sq_freq = [0.1]’; % Frequencies of square signals (column vector)
sin_amp = [0]; % Amplitude of sine signals (row vector)
sin_freq= [0]'; % Frequencies of sine signals (column vector)
Nvar = 0'; % Variance of white noise signal

If refty=‘siggener’ a simple signal generator is invoked to generate the reference trajectory. The
variables above define the trajectory. It is possible to create a trajectory composed of several square
waves and/or sinusoidals by defining sq_amp, sq_freq, sin_amp, and sin_freq as vectors.

% -- Constant Gain Controller Parameters --
K=8; % PID parameters
Td=0.8; % PID
alf=0.1; % PID
Wi=0.2; % PID (1/Ti)

It is possible to use an ordinary PID controller instead of the predictive controller. This is achieved by
setting regty=‘pid’. The controller is implemented as a discrete version of:

D s K
T s

alf T s
T s

T s
d

d

i

i

()
*

= +
+

+1
1

1

% ------ Specify data vectors to plot -------
% plot_a and plot_b must be cell structures containing the vector names in strings
plot_a = {'ref_data','y_data'};
plot_b = {'u_data'};

The final lines in the file specify the signals to be plotted. The signals considered most interesting are
stored in vectors with names concluded by the letters ‘_data’. For example, ref_data contains the
reference, y_data the output signal and u_data the control signal. plot_a and plot_b are cell structures
containing, in each element, a sting which is evaluated by the program. For example, it is possible to
write:
plot_b = {'3.5*u_data+10'};

to plot a scaled version of the control signal. Since the simulation programs are script files, all
parameters, vectors and matrices will be available in the workspace after the simulation, and if
necessary they can be analysed further. A typical plot produced by the simulation program is shown
below.

1. Tutorial

NNCTRL Toolkit User’s Guide 1-9

ref_data
y_data

0 50 100 150 200 250
−3

−2

−1

0

1

2

3

Samples

Nonlinear Predictive Control

u_data

0 50 100 150 200 250
−15

−10

−5

0

5

10

15

Samples

2 Control system design

In this chapter the control systems implemented in the NNCTRL toolkit are introduced. The control
systems provided are: direct inverse control, internal model control, feedforward, control by input-
output linearization, optimal control, approximate pole placement control, minimum variance control,
predictive control based on instantaneous linearization, and nonlinear predictive control.

To experience the features of the different types of neural network based control it is often relevant to
investigate how the controllers perform on a well-known process. In fact, this is one of the primary
purposes of this toolkit. For this reason it is possible to control models that are built in SIMULINK
or differential equation models that are specified in MATLAB. Also it is possible to simulate an
experiment with the process to acquire a set of data for system identification and controller design.

In the following sections the different functions are discussed, starting with how to simulate an
experiment (if externally generated data are used, one can skip this section). Not all the options for the
different *init.m files will be discussed since they have a great deal of overlap with one another and
with the one shown in the previous chapter.

2.1 SIMULATING THE EXPERIMENT

Experiment Simulation

experim
expinit

Simulate experiment.
File with design parameters for experim.

If the NNCTRL toolkit is used to gain experience with neural network based control or if a
rudimentary model of the process to be controlled exists, the experiment can be simulated using a
SIMULINK or MATLAB model of the process. The experiment can be conducted in open-loop, but
if the process is poorly damped or unstable it is also possible to make the experiment in closed-loop
with a PID-controller (or an RST-controller).

2. Control System Design

 2-2

y

u

r
PID controller System

+
+

+
-

uc

up

Figure 3 Collecting data in closed-loop with a PID-controller.

A manually tuned PID-controller will often be designed somewhat conservatively - its primary
objective is to stabilize the process. It is therefore possible to add a signal (up) directly to the control
signal to ensure a certain high frequency content in the data set. If the experiment is conducted in
open-loop it makes no difference whether r or up is used as the reference signal.

The function experim simulates the experiment and the file expinit contains the initializations to be
specified by the user. Some excerpts from the expinit file are given below:

% ---------- Switches -----------
regty ='none'; % Controller type (rst, pid, none)
refty ='predef'; % Reference signal (siggener/none/<var. name>)
probety ='none'; % Probing signal (none/<var. name>)

regty specifies the type of controller. regty=‘none’ implies that the experiment is conducted in
open-loop, regty=‘pid’ that the experiment is conducted in closed-loop with a PID-controller, and
regty=‘rst’ that the experiment is conducted in closed-loop with an RST-controller. The design
parameters of the PID and RST controllers are also set in the file:

% -------- Linear Controller Parameters ---------
K=8; % PID parameters
Td=0.8; % PID
alf=0.1; % PID
Wi=0.2; % PID (1/Ti)

r0=0.0609; % RST parameters
r1=0.0514; % RST
t0=0.2; % RST
s0=0.802; % RST
s1=-0.602; % RST
R = [r0 r1];
S = [s0 s1];
T = t0;

refty selects the type of reference signal (r) and probety the type of signal added directly to the
control signal in a closed-loop experiment (up). If refty=‘siggener’ the built-in signal generator is
used. If this is not adequate it is possible to use a signal defined in a vector which is available in the
workspace. If the name of the vector is my_signal then set refty= ‘my_signal’.

2. Control System Design

NNCTRL Toolkit User’s Guide 2-3

2.2 CONTROL WITH INVERSE MODELS

Control with Inverse Models

general
special1
invinit1
special2
special3
invinit2
invsim
invcon
invinit
imccon
imcinit
ffcon
ffinit
invtest

General training of inverse models.
Specialized back-prop training of inverse models.
File with design parameters for special1.
Specialized training with an RPLR type Gauss-Newton method.
Specialized training with an RPEM type Gauss-Newton method.
File with design parameters for special2 and special3.
Function for evaluating inverse models.
Program for simulating direct inverse control.
File with design parameters for invcon.
Program for simulating internal model control.
File with design parameters for imccon.
Program for simulating process with feedforward control.
File with design parameters for ffcon.
Program for demonstrating direct inverse control.

Conceptually, the most fundamental neural network based controllers are probably those using the
“inverse” of the process as the controller. The most simple concept is called direct inverse control.
The principle of this is that if the process can be described by:

 ()y t g y t y t n u t u t m() (), , (), (), , ()+ = − + −1 1� �

a network is trained as the inverse of the process:

 ()�() � (), (), , (), (), ()u t g y t y t y t n u t u t m= + − + − −−1 1 1 1�

The inverse model is subsequently applied as the controller for the proces by inserting the desired
output, the reference r(t+1), instead of the output y(t+1). There are several references available which
use this idea, e.g., Psaltis et al. (1988), Hunt & Sbarbaro (1991), and Hunt et al. (1992). See also fig. 4.
Internal model control (IMC) and feedforward control represent other strategies that utilize inverse
models.

2. Control System Design

 2-4

NN Process

q-2

q-2
y(t+1)u(t)r(t+1)

q-1

inverse
model

Figure 4 Direct inverse control.

Before considering the actual control system, an inverse model must be trained. Two strategies for
obtaining the inverse model are provided in the toolkit: generalized training and specialized training
(Psaltis et al. 1988). In generalized training a network is trained off-line to minimize the following
criterion (θ specifies the weights in the network):

 ()J u t u t
t

N

1
2

1

() () �()θ = −
=
�

An experiment is performed and a set of corresponding inputs and outputs are stored. Subsequently
the function general, which applies a version of the Levenberg-Marquardt method (Fletcher, 1987), is
invoked.

Specialized training is an on-line procedure related to model-reference adaptive control. The idea is to
minimize the criterion:

 ()J y t y tm
t

2
2

() () ()θ = −�

where

 y t
q B q

A q
r tm

m

m

()
()

()
()=

−1

The inverse model is obtained if Am=Bm=1, but often a low-pass filtered version is preferred. In this
case the result will be some kind of “detuned” (or “smoothed”) inverse model.

Specialized training is often said to be goal directed because it, as opposed to generalized training,
attempts to train the network so that the output of the process follows the reference closely. For this
reason, specialized training is particularly well-suited for optimizing the controller for a prescribed
reference trajectory. This is a relevant feature in many robotics applications. Also it is with special
training possible to make an inverse model for processes that are not one-to-one.

Specialized training must be performed on-line and thus it is much more difficult to carry out in
practice than generalized training. Before the actual training of the inverse model is initiated, a
“forward” model of the process must be trained since this is required by the scheme. This can be

2. Control System Design

NNCTRL Toolkit User’s Guide 2-5

created with the NNSYSID toolbox from a data set collected in an experiment performed in advance
as described in section 2.1. The principle is depicted in fig. 5.

yu

r NN
inverse model

NN
forward model

Process

Reference
model

ym

ŷ

e

eu
+

-

Figure 5 The principle of specialized training.

Unlike generalized training the controller design is model based when the specialized training scheme
is applied since a model of the process is required. Details on the principle can be found in Hunt &
Sbarbaro (1991). Three different variations of the scheme have been implemented: One using a
recursive back-propagation algorithm for minimizing the criterion (special1) and two more rapid
methods using different variations of the recursive Gauss-Newton algorithm (special2 and special3).
Specialized training is more complex to implement than generalized training and requires more design
parameters. For this reason it has not been implemented as MATLAB functions like generalized
training. The three variations of the scheme are instead implemented by the same type of combination
of script files and initialization files as was discussed in chapter 1.

The difference between special 1 and special2 on one side and special3 on the other side lies in the
way the derivative of the process output with respect to the weights of the inverse model is
approximated. special 1 and special2 have been implemented in the spirit of recursive “pseudo-linear
regression” methods (Ljung, 1987) in the sense that the past outputs and past controls dependency on
the network weights is disregarded:

 ψ
θ

∂
∂ θ

∂
∂

∂
∂θ

()
() ()

()
() �()

()
()

t
dy t
d

y t
u t

du t
d

y t
u t

u t= =
−

− ≈
−

−
1

1
1

1

special3 is closer to the true recursive prediction error method discussed in Ljung (1987):

ψ
θ

∂
∂ θ

∂
∂

∂
∂θ

∂
∂ θ

∂
∂ θ

()
() ()

()
()

�()
()

() ()
()

�() ()
()

()

t
dy t
d

y t
u t

du t
d

y t
u t

u t u t
y t i

dy t i
d

u t
u t i

du t i
di

n

i

m

= =
−

−

≈
−

− + −
−

− + −
−

−�

�
�

�

�
�

= =
� �

1
1

1
1 1 1

1 2

In special2 and special3 the user can choose one of three updating formulas (see Åström &
Wittenmark, 1995; Salgado et al, 1988):

2. Control System Design

 2-6

Exponential forgetting (method=‘ff’):

()K t P t t I t P t tT() () () () () ()= − + −
−

1 1
1ψ λ ψ ψ

()� () � () () () � ()θ θt t K t y t y t= − + −1

()P t P t K t t P tT() () () () ()= − − −1 1ψ λ

Constant-trace (method=‘ct’):

()K t P t t t P t tT() () () () () ()= − + −
−

1 1
1ψ λ ψ ψ

()� () � () () () � ()θ θt t K t y t y t= − + −1

P t P t
P t t t P t

t P t t

T

T() ()
() () () ()

() () ()
= − + − −

+ −
	

�

�

�

−

1
1 1

1 1

1
ψ ψ

ψ ψ
λ

P t
tr P t

P t I()
(())

()max min
min= − +α α α

Exponential Forgetting and Resetting Algorithm (method=‘efra’):

()K t P t t t P t tT() () () () () ()= − + −
−α ψ ψ ψ1 1 1

1

()� () � () () () � ()θ θt t K t y t y t= − + −1

P t P t K t t P t I P tT() () () () () ()= − − − + − −1
1 1 12

λ
ψ β δ

To illustrate how specialized training is executed, some excerpts from the file invinit2 are shown
below. This file contains the design parameters for both special2 and special3. The file invinit1, which
contains the design parameters for special1, has almost the same structure.

% ---------- Switches -----------
simul = 'simulink'; % System specification (simulink/matlab/nnet)
method = 'ff'; % Training algorithm (ff/ct/efra)
refty = 'siggener'; % Reference signal (siggener/<var. name>)

% ------ General Initializations -------
Ts = 0.20; % Sampling period (in seconds)
samples = 200 ; % Number of samples in each epoch

2. Control System Design

NNCTRL Toolkit User’s Guide 2-7

method specifies the training algorithm. The forgetting factor algorithm will usually give the most
rapid convergence, but be aware of the possibility of covariance blow-up (Åström & Wittenmark,
1995).

refty specifies the type of reference signal.

% ----- Neural Network Specification ------
%The "forward model file" must contain the following variables which together
% define a NNARX-model:
% NN, NetDeff, W1f, W2f
% and the "inverse model file" must contain
% NN, NetDefi, W1i, W2i
% (i.e. regressor structure, architecture definition, and weight matrices)
nnforw = 'forward'; % Name of file containing forward model
nninv = 'inverse'; % Name of file containing inverse model

nnforw should be set to the name of the file containing the architecture definition and weight matrices
for a neural network model of the process to be controlled. This model is required to provide estimates

of the process’ Jacobian:
∂

∂
�()
()
y t

u t −1

nninv should be set to the name of a file containing the architecture definition and the initial weight
matrices for the inverse neural network model. The weights can be initialized by random, but most
often it is better to make a rough initialization using generalized training. When working in this way,
specialized training can be considered a fine-tuning of the inverse model.

% ------------ Reference Model ---------------
Am = [1 0.7]; % Model denominator
Bm = [0.3]; % Model numerator

When the ordinary inverse model is needed Am=1 and Bm=1. However, often it is preferred that the
closed-loop system follows a prescribed transfer function model. Am and Bm are then be set to the
desired closed-loop denominator and numerator, respectively.

% ------------ Training parameters -----------
maxiter = 8;

maxiter specifies the number of times that the reference trajectory (of the length specified in the
variable samples) is repeated. The total number of times that the weights are updated are thus
maxiter*samples.

2. Control System Design

 2-8

% --- Forgetting factor algorithm (ff) ---
% trparms = [lambda p0]
% lambda = forgetting factor (suggested value 0.995)
% p0 = Covariance matrix diagonal (1-10)
%
% --- Constant trace algorithm (ct) ---
% trparms = [lambda alpha_max alpha_min]
% lambda = forgetting factor (suggested value 0.995)
% alpha_max = Max. eigenvalue of covariance matrix (100)
% alpha_min = Min. eigenvaule of covariance matrix (0.001)
%
% --- Exponential Forgetting and Restting Algorithm (efra) ---
% trparms = [alpha beta delta lambda]
% Suggested values:
% alpha = 0.5-1
% beta = 0.001
% delta = 0.001
% lambda = 0.98
trparms = [0.995 10];
%trparms = [0.995 100 0.001];
%trparms = [1 0.001 0.001 0.98];

trparms is a vector containing the design parameters for the update of the covariance matrix in the
recursive Gauss-Newton algorithm. The content of this vector depends of course on the selected
updating scheme (exponential forgetting, constant trace, EFRA).

% ------ Specify data vectors to plot -------
% plot_a and plot_b must be cell structures containing the vector names in strings
plot_a = {'ref_data','y_data','ym_data','yhat_data'};
plot_b = {'u_data'};

Each time the entire reference trajectory has been applied, a plot of the signals defined in plot_a and
plot_b will appear on the screen. To give the user an indication of how the algorithm is converging,
the SSE (sum-of-squared-errors) between reference and output signal is displayed in the plot.

Once an inverse model has been trained there are different ways in which it can be used for control.
The toolkit provides three different concepts:

Direct inverse control:
As the name indicates the inverse model is directly used as the controller:

 ()u t g r t y t y t n u t u t m() � (), (), , (), (), ()= + − + − −−1 1 1 1�

The principle was shown in fig. 4.

invcon is used for simulating the closed-loop system while the design parameters are specified in the
file invinit. Some examples of design parameters to be initialized in invinit are shown below:

% ---------- Switches -----------

2. Control System Design

NNCTRL Toolkit User’s Guide 2-9

regty ='dic'; % Controller type (dic, pid, none)
simul ='simulink’; % Control object spec. (simulink/matlab/nnet)

regty=‘dic’ means direct inverse control. If regty=‘pid’ an ordinary PID-controller will be used
instead.

% ----- Inverse Network Specification ------
% The file must contain the variables:
% NN, NetDefi, W1i, W2i
% (i.e. regressor structure, architecture definition, and weight matrices)
nninv = 'inverse'; % Name of file

The variable nninv is set to the name of the file containing the regressor structure, architecture
definition and weight matrices for the neural network that is modelling the inverse of the process.

% ------------ Reference Filter ---------------
Am = [1]; % Filter denominator
Bm = [1]; % Filter numerator

Am and Bm defines a filter that is used on the reference signal before it is applied to the inverse model.
It has nothing to do with the reference model used in specialized training. An option to filter the
reference is provided to avoid that the reference signal has a large high frequency component.

Internal model control:
This design has been treated in Hunt & Sbarbaro (1991). The control signal is synthesized by a
combination of a “forward” model of the process and an inverse model. An attractive property of this
design is that it provides an off-set free response even if the process is affected by a constant
disturbance. The scheme is implemented in imccon and imcinit.

NN-model
q-1 M

y(t)u(t)r(t) NN-controller
C

Process
q-1 P

Filter
F

y(t)^ +

-

+
-

d(t)

+

Figure 6 Inverse model control (IMC).

The file imcinit is very similar to invinit. The differences are shown below:
% ---------- Switches -----------
regty ='imc'; % Controller type (imc, pid, none)

regty must be set to 'imc' to select internal model control.

2. Control System Design

 2-10

% ----- Inverse Network Specification ------
% The file must contain the variables:
% NN, NetDefi, W1i, W2i
% (i.e. regressor structure, architecture definition, and weight matrices)
nninv = 'inverse3'; % File name

% ----- Forward Network Specification ------
% The file must contain: NN, NetDeff, W1f, W2f
nnforw = 'forward'; % File name

A neural network model of the process is integrated in the controller design as shown on Fig. 6. If the
specialized training scheme was used for creating the inverse model, a model of the process is already
available. Otherwise a new model must be trained before the IMC concept can be used.

% ---------------- Filter ------------------
Am = [1 -0.7]; % Filter denominator
Bm = [0.3]; % Filter numerator

Am and Bm are denominator and numerator of the filter, F, shown in fig.6.

Feedforward
Using inverse models for feedback control leads to a dead-beat type of control, which is unsuitable in
many cases. If a PID controller has already been tuned for stabilizing the process, an inverse model
can be used for providing a feedforward signal directly from the reference. The scheme is
implemented in ffcon and ffinit.

y

u

r
PID controller Process

+

NN
inverse model

+
+

-
ufb

uff

Figure 7 Feedforward for optimization of an existing control system.

2. Control System Design

NNCTRL Toolkit User’s Guide 2-11

An excerpt from the file ffinit is shown below:

% ---------- Switches -----------
regty ='pidff'; % Controller type (pid, pidff, ff, none)

% -------- Linear Controller Parameters ---------
K=8; % PID parameters
Td=0.8; % PID
alf=0.1; % PID
Wi=0.2; % PID (1/Ti)

If regty=‘pid’ a constant gain PID controller is used with the parameters defined by K, Td, alf, and
Wi. If regty=‘ff’ the process is controlled in open-loop using the inverse neural network model as a
feedforward controller. regty=‘pidff’ combines the two so that the PID controller is used for
stabilizing the process and suppressing disturbances while the feedforward is used for providing a fast
tracking of the reference.

2. Control System Design

 2-12

2.3 FEEDBACK LINEARIZATION

Control by Feedback Linearization

fblcon
fblinit
fbltest

Simulate control by feedback linearization.
File with design parameters for fblcon.
Program for demonstrating control by feedback linearization.

Feedback linearization is a common method for controlling certain classes of nonlinear processes. The
toolkit provides a simple example of a discrete input-output linearizing controller that is based on a
neural network model of the process. The NNSYSID toolbox contains the function nniol to train a
neural network model that has the following structure:

()

())1()(,),2(),(,),1(
)(,),2(),(,),1()(ˆ

−−−−−
+−−−−=

tumtutuntytyg

mtutuntytyfty

��

��

f and g are two separate networks. A feedback linearizing controller is obtained by calculating the
controls according to:

()

())1(,),1(),1(,),(
)1(,),1(),1(,),()(

)(
+−−+−

+−−+−−=
mtutuntytyg

mtutuntytyftw
tu

��

��

Selecting the virtual control, w(t), as an appropriate linear combination of past outputs plus the
reference enables an arbitrary assignment of the closed-loop poles. As for the model-reference
controller, feedback linearization is thus a nonlinear counterpart to pole placement with all zeros
canceled (see Åström & Wittenmark, 1995). The principle is depicted in Figure 8.

NN-1

Process
y(t)u(t-1)r(t)

f(••••)
NN-2
g(••••)

q-2 q-1q-1 q-2 q-1q-1

q-2 q-1

w(t)-f(••••)
g(••••)

Figure 8 Discrete feedback linearization.

2. Control System Design

NNCTRL Toolkit User’s Guide 2-13

The design parameters must be specified in the file fblinit. Excerpts from the file are discussed below.

% ---------- Switches -----------
regty ='fbl'; % Controller type (fbl, pid, none)

regty=‘fbl’ gives control by feedback linearization.

% ----- Neural Network Specification ------
% "nnfile" must contain the following variables which together define
% the network model:
% NN, NetDeff, NetDefg, W1f, W2f, W1g, W2g
% (i.e. regressor structure, architecture definitions, and weight matrices)
nnfile = 'net_file'; % Name of file

nnfile, which contains the regressor structure, architecture definition and weights of the neural
network, must in this case include seven different variables due to the somewhat special network
architecture. NN specifies the regressors and is set as for an NNARX model. NetDeff defines the
architecture of the network implementing f while NetDefg defines the architecture of the network
implementing g. W1f and W2f contain the weights for f while W1g and W2g contain the weights for g.

% ---- Desired characteristic polynomial ---
Am = [1 -1.4 0.49]; % Characteristic polynomial

Am contains the desired closed-loop characteristic polynomial. In this case the polynomial has been
selected to A z z zm () .4 .49= − +2 1 0 corresponding to two poles in z = 0 7. .

2. Control System Design

 2-14

2.4 OPTIMAL CONTROL

Optimal Control

opttrain
optrinit
optcon
optinit
opttest

Simulate control by feedback linearization.
File with design parameters for opttrain.
Simulate optimal control of process (similar to invcon).
File with design parameters for optcon.
Program for demonstrating the optimal control concept.

A simple training algorithm for design of optimal controllers has been implemented by a small
modification of the specialized training algorithm implemented in special2. The modification consists
of an additional term which is added to the criterion to penalize the squared controls:

 () ()J r t y t u t
t

3
2 2 0() () () () ,θ ρ ρ= − + ≥�

The training of the network is very similar to specialized training of inverse models and is also
performed on-line. As for specialized training a “forward” model of the process must have been
identified with the NNSYSID toolbox in advance.

The training is carried out with opttrain which implements a modified recursive Gauss-Newton
algorithm. For the sake of brevity let

 e t
y t

u t
e tu ()

()
()

()≡
−

∂
∂ 1

 ψ
θu t

du t
d

()
()≡ − 1

 ψ ∂
∂

ψ()
�()
()

()t
y t

u t
tu≡

−1

The gradient is changed which manifests itself in a new weight update:

 ()�() �() () () () ()θ θ ψ ρt t P t t e t u tu u= − + − −1 1

The update of the inverse Hessian is exactly the same as in the specialized training scheme
implemented in special2. Naturally, it is an approximation to use the same covariance update(s) as in
specialized training, but it appears to work reasonably well.

2. Control System Design

NNCTRL Toolkit User’s Guide 2-15

The following variables must be set in optrinit before the training is started:

% ---------- Switches -----------
simul = 'simulink'; % System specification (simulink/matlab/nnet)
method = 'ff'; % Training algorithm (ff/ct/efra)
refty = 'siggener'; % Reference generation (siggener/<variable name>)

method specifies the variation of the training algorithm (forgetting factor, constant trace, EFRA).
refty specifies the type of reference signal. Since this is an on-line scheme related to specialized
training, it is excellent for optimizing the controller for a prescribed reference trajectory.

% ----- Neural Network Specification ------
% The "forward model file" must contain the following variables which
% define a NNARX-model:
% NN, NetDeff, W1f, W2f
% and the "controller network file" must contain
% NetDefc, W1c, W2c
% (i.e. regressor structure, architecture definition, and weight matrices)
nnforw = 'forward'; % Name of file containing forward model
nnctrl = 'initopt'; % Name of file containing initial controller net

Two files must be present (actually the same file can be used for both networks): nnforw is set to the
filename containing the network which models the process. This network must be trained in advance
with the nnarx function in the NNSYSID toolbox. The variables defining the network must have the
names NN, NetDeff, W1f, and W2f.

nnctrl contains the initial controller network. The network weights can for example be initialized
with the generalized inverse training scheme (function general). The variables defining the network
must have the names (NN,) NetDefc, W1c, and W2c.

If desired, it is possible to filter the reference:

% ------------ Reference filter ---------------
Am = [1 -0.7]; % Filter denominator
Bm = [0.3]; % Filter numerator

Am and Bm do not specify a reference model as in specialized training. In this case they simply specify a
filter to be used on the reference signal.

Most of the design parameters associated with the training algorithm were discussed in the section
about specialized training. In this case it is of course necessary to include an additional parameter,
namely ρ:

% ------------ Training parameters -----------
maxiter = 7; % Maximum number of epochs
rho = 1e-3; % Penalty factor on squared controls

2. Control System Design

 2-16

If rho=0, the algorithm degenerates to specialized training and the inverse model is thus obtained.

When the controller network has been trained, the final network is stored in a file. optcon is then used
for simulating the closed-loop system. This function is essentially identical to invcon except that the
design parameters must be defined in optinit and the names of the variables specifying the controller
network must have different names.

2. Control System Design

NNCTRL Toolkit User’s Guide 2-17

2.5 INSTANTANEOUS LINEARIZATION

Control by Instantaneous Linearization

lincon
lininit
diophant
dio
apccon
apcinit
lintest

Simulate control using approximate pole placement or minimum variance.
File with design parameters for lincon.
General function for solving Diophantine equations.
Prepares problem for solution by diophant.
Simulate approximate generalized predictive control.
File with design parameters for apccon.
Program for demonstrating approximate pole placement control.

In Nørgaard et al. (2000) a technique for linearizing neural network models around the current
operating point is given. The idea is summarized in the following.

Assume that a deterministic model of the process under consideration has been established with the
NNSYSID-toolbox:

 ()y t g y t y t n u t d u t d m() (), , (), (), , ()= − − − − −1 � �

The “state” ϕ(t) is then introduced as a vector composed of the arguments of the function g:

 []z t y t y t n u t d u t d m T() () () () ()= − − − − −1 � �

At time t=τ linearize g around the current state ϕ(τ) to obtain the approximate model:

 ~() ~() ~() ~() ~()y t a y t a y t n b u t d b u t d mn m= − − − − − + − + + − −1 01 � �

where

()

()

a
g t
y t i

b
g t

u t d i

i

t

i

t

= −
−

=
− −

=

=

∂ ϕ
∂

∂ ϕ
∂

ϕ ϕ τ

ϕ ϕ τ

()
()

()
()

() ()

() ()

and

~() () ()
~() () ()

y t i y t i y i

u t i u t i u i

− = − − −
− = − − −

τ
τ

2. Control System Design

 2-18

Seperating the portion of the expression containing components of the current state vector, the
approximate model may alternatively be written as:

 y t A q y t q B q u td() (()) () () () ()= − + +− − −1 1 1 ζ τ

where the bias term, ζ(τ), is determined by

 ζ τ τ τ τ τ τ() () () () () ()= + − + + − − − − − − −y a y a y n b u d b u d mn m1 01 � �

and

A q a q a q

B q b b q b q
n

n

m
m

()

()

− − −

− − −

= + + +

= + + +

1
1

1

1
0 1

1

1 �

�

The approximate model may thus be interpreted as a linear model affected by an additional DC-
disturbance, ζ(τ), depending on the operating point.

It is straightforward to apply this principle to the design of control systems. The idea is illustrated in
Figure 9.

Extract
linear model

Controller
design

Controller Process

Linearized model parameters

Input

Output

Controller
Parameters

Reference

Figure 9. Instantaneous linearization applied to control system design.

Although the controller is not adaptive in the sense that it has been designed with time-varying
processes in mind, the concept is closely related to the indirect self-tuning regulator concept examined
in Åström & Wittenmark (1995). Instead of recursively estimating a linear model at each sample, a
linear model is extracted from a nonlinear neural network model instead. The method is thus a type of
gain scheduling control where the schedule is infinite. Unlike the previously mentioned concepts the
controller is in this case not directly implemented by a neural network.

Approximate pole placement and minimum variance:
Together lincon, lininit, and diophant have adopted the instantaneous linearization principle for
realization of different controllers. Three different controllers have been implemented.

• Pole placement with all zeros canceled. The zeros are canceled and the controller is designed to

make the closed-loop system follow a prescribed transfer function model.
• Pole placement with no zeros canceled. Only the poles of the closed-loop system are moved to

prescribed locations.

2. Control System Design

NNCTRL Toolkit User’s Guide 2-19

• Minimum Variance. Based on the assumption that the bias, ζ(τ), is integrated white noise:

ζ τ()
()= e t
∆

, the so-called MV1-controller has been implemented. This controller is designed to

minimize the criterion:

 () [] []{ }J t u t E y t d W q r t u t It4
1 2 2, () () () () ()= + − +− δ ∆

 where It specifies the information gathered up to time t:

 { }I y t y t y u t ut = − −(), (), , (), (), , ()1 0 1 0� �

The functions dio and diophant are provided for solving the Diophantine equation.

An excerpt of the file lininit:

% ---------- Switches -----------
regty ='rst'; % Controller type (rst/pid/none)
design ='ppaz'; % Controller design (ppnz/ppaz/mv1/off)

The pole placement and minimum variance controllers are all realized in the RST-controller structure
shown in fig. 10. Unless a constant gain PID-controller is desired, regty should thus be set to 'rst'.

r(t)
T(q-1)

1
R(q-1) System

S(q-1)

u(t) y(t)+

-

Figure 10 The RST-controller: R q y t T q r t S q y t() () () () () ()− − −= −1 1 1

In Åström & Wittenmark (1995) this type of controller structure is discussed thoroughly and the reader
is therefore refered to this book for supplementary information.

design specifies the type of design, i.e., the implementation of the “design block” in Figure 9:
design=‘ppaz’ gives pole placement with all the zeros canceled.
design=‘ppnz’ gives pole placement with no zeros canceled.
design=‘mv1’ gives the MV1-controller.

If a pole placement design is selected, the following design parameters must be specified. The reader
is referred to Åström & Wittenmark (1995) for an explanation of the different polynomials (for
convenience the same notation is used here, except that Åström & Wittenmark uses the forward shift
operator, q, rather than the delay operator, q-1).

2. Control System Design

 2-20

% -- Design parameters in pole placement --
% deg(Am)=deg(A)+deg(Ar)
% deg(Ao)=deg(A)-1 if no zeros are cancled
% deg(Ao)=deg(A)-deg(B)-1 if all zeros are canceled
Am = [1.0 -1.4 0.49 0]; % Denominator of desired model
Bm = [0.09]; % Numerator of desired model (starts in z^{-1})
Ao = [1]; % Observer polynomial
Ar = [1 -1]; % Pre-specified factor of R. Ar MUST contain
 % [1 -1] as a factor (=integrator).
As = 1; % Pre-specified factor of S (e.g., notch filter)

Am, Bm, Ao, Ar, and As are all polynomials in q-1. Bm is only used if the zeros are canceled. If no zeros
are canceled the open-loop zeros are retained and the content of Bm is ignored. However, the DC-gain
is modified to ensure a unity gain at DC.

In the MV1 design it is only necessary to specify the penalty factor, δ:
% -------- Design parameters in MV1 --------
delta = 0.002; % Penalty on squared differenced controls

The polynomials Am, Bm, Ao, Ar, and As are not used at all and do not have to be set.

Approximate GPC:
The idea behind generalized predictive control (GPC), which is realized by apccon and apcinit, is to at
each iteration minimize a criterion of the following type:

 [] []��
==

−+∆++−+=
uN

i

N

Ni

ituityitrtUtJ
1

22
5)1()(ˆ)())(,(

2

1

ρ

with respect to the Nu future controls

 []U t u t u t Nu
T

() () ()= + −� 1

and subject to the constraint

 ∆u t i N i N du() ,+ = ≤ ≤ −0 2

N1 denotes the minimum prediction (or costing) horizon, N2 the maximum prediction (or costing)
horizon, and Nu the (maximum) control horizon. ρ is a weighting factor for penalizing variations in the
control input. ζ(τ) is modelled as integrated white noise and the predictions of future outputs, � ()y t i+ ,
are determined as the minimum variance predictions. The optimization problem (which must be
solved on-line since a new linear model is obtained at each sample) results in a sequence of future
controls, U(t). From this sequence the first component, u(t), is then applied to the process. Nørgaard et
al. (2000) details the derivation of the controller.

2. Control System Design

NNCTRL Toolkit User’s Guide 2-21

The design parameters for the approximate GPC are relatively straightforward to initialize. The
following is an excerpt from the file apcinit. Compare this to the definition of the GPC-criterion J5.

% ---------- Switches -----------
regty ='apc'; % Controller type (apc, pid, none)

% ---------- APC initializations -----------
N1 = 1; % Minimum prediction horizon (typically=nk)
N2 = 7; % Maximum prediction horizon (>= nb)
Nu = 2; % Control horizon
rho = 0.03; % Penalty on squared differenced controls

2. Control System Design

 2-22

2.6 NONLINEAR PREDICTIVE CONTROL

Nonlinear Predictive Control

npccon1
npccon2
npcinit
predtest

Simulate NPC using a Quasi-Newton method.
Simulate NPC using a Newon based Levenberg-Marquardt method.
File containing the design parameters.
Program for demonstrating generalized predictive control.

The instantaneous linearization technique has some shortcomings when the nonlinearities are not
relatively smooth. Unfortunately, practically relevant criterion-based design methods founded directly
on nonlinear neural network models are few. One of the most promising methods is nonlinear
predictive control, which is based on the criterion J5 defined above. However, in nonlinear predictive
control the prediction of future outputs is not obtained through a linearization, but from succesive
recursive use of a nonlinear NNARX model:

(
)

� () �(), , � (min(,)), (), , (max(,)),

(), , ()

y t k t g y t k y t k k n y t y t n k

u t d k u t d m k

+ = + − + − − −

− + − − +

1 0� �

�

The optimization problem is in this case much more difficult to solve and an iterative search method is
required. The reader is referred to Nørgaard et al. (2000) for a derivation of the control law and for a
discussion of relevant optimization algorithms. The toolkit offers two different algorithms for solving
the problem: A Quasi-Newton method applying the BFGS-algorithm for updating the inverse Hessian
and a Newton based Levenberg-Marquardt method.

An excerpt from the file npcinit.m shows that most design parameters are similar to apcinit.m:

% ---------- Switches -----------
regty ='npc'; % Controller type (npc, pid, none)

% ---------- GPC initializations -----------
N1 = 1; % Min. prediction horizon (Must equal the time delay)
N2 = 7; % Max. prediction horizon (>= nb)
Nu = 2 % Control horizon
rho = 0.03; % Penalty on squared differenced controls

% -- Minimization algorithm initializations -
maxiter = 5; % Max. number of iterations to determine u
delta = 1e-4; % Norm-of-control-change-stop criterion
initval = '[upmin(Nu)]';

2. Control System Design

NNCTRL Toolkit User’s Guide 2-23

Different design parameters specify how the optimization should be performed. The default values
shown in the excerpt will work for most applications, but sometimes it can be necessary to modify
them.

maxiter is of course the maximum number of iterations. maxiter=5 is usually appropriate. A smaller
value implies that the simulation runs faster while a bigger value implies an enhanced accuracy.

delta is essentially another stopping criterion. If the length of the vector obtained by subtracting the
previous iterate from the current is smaller than delta: U t U t deltai i() (() ()− <−1) the current iterate is

accepted as the final one.

initval is a vector that has been introduced because it may happen that the criterion to be minimized
(J5) has more than one local minimum. Since the criterion is minimized iteratively an initial guess on
the sequence of future controls, []U t u t u t u t Nu

() () () ()() (), (), , ()0 0 0 01 1= + + −� , is required. If the

criterion has more than one local minimum it is desireable to execute the optimization algorithm more
than once to find the global one, starting from different initializations of U(0)(t). npccon1 and npccon2
have been implemented in such a way that the first Nu-1 controls are taken from the final iterate on
U(t-1), determined in the previous sample. The vector initval then contains the initial guess(es) on
u(t+Nu-1). initval has been implemented as a “string vector” to make it possible that expressions
can be written in the vector. The default choice is initval = '[upmin(Nu)]' which implies that
 []U t u t u t u t N u t Nt

final
t

final
t

final
u t

final
u

() () () () ()() (), (), , (), ()0
1 1 1 11 2 2= + + − + −− − − −� is used (the final control in the

vector U(final)(t-1) is repeated). The choice initval='[upmin(Nu) 5]' implies that the algorithm is
executed twice and that the starting point the second time is
 []U t u t u t u t Nt

final
t

final
t

final
u

() () () ()() (), (), , (),0
1 1 11 2 5= + + −− − −�

y

u

r
Optimization System

Figure 11 Nonlinear predictive control. The controller is an iterative optimization scheme.

References
R. Fletcher (1987): “Practical Methods of Optimization,” Wiley, 1987
The MathWorks (1999): “Control System Toolbox, User’s Guide, Version 4.2” The MathWorks, Inc.
K.J. Hunt, D. Sbarbaro (1991): “Neural Networks for Nonlinear Internal Model Control,” IEE

Proceedings-D, Vol. 138, No. 5, pp. 431-438.
K.J. Hunt, D. Sbarbaro, R. Zbikowski, P.J. Gawthrop (1992): “Neural Networks for Control Systems -

A Survey,” Automatica, Vol. 28, No. 6, pp. 1083-1112.
L. Ljung (1987):“System Identification - Theory for the User,” Prentice-Hall, 1987.
M. Nørgaard (2000): “Neural Network Based System Identification Toolbox, Ver. 2” Tech. report 00-

E-891, Department of Automation, Technical University of Denmark.
M. Nørgaard, O. Ravn, N. K. Poulsen, L. K. Hansen (2000): “Neural Networks for Modelling and

Control of Dynamic Systems,” Springer-Verlag, London, 2000.
D. Psaltis, A. Sideris, A.A. Yamamure (1988): “A Multilayered Neural Network Controller,” Control

Sys. Mag., Vol. 8, No. 2, pp. 17-21.
M.E. Salgado, G. Goodwin, R.H. Middleton (1988): “Modified Least Squares Algorithm

Incorporating Exponential Forgetting and Resetting,” Int. J. Control, 47, pp. 477-491.
K.J. Åström, B. Wittenmark (1995): “Adaptive Control,” 2nd. Edition, Addison-Wesley.

