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System Equilibrium at Desired Output

Recall

0 = FAX *+GAu *+LAw *
Ay*=H Ax*+H Au*+H Aw *
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Equilibrium solution

Ax*=B Ay, — (B, L+B H, )Aw *
Au*=B,Ay. —(B,L+B,H )Aw *

where
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Non-Zero Steady-State Regulation
with Proportional LQ Regulator

Command input provides equilibrium state and control values

E Au* _Au(t) Gyath Ax(f)
Ay*
LIE ]

Control law with command input
Au(t)= Au*(t)— C[ Ax(r)— Ax*(t) |
=B, Ay *—C[ Ax(¢)- B,,Ay * |

=(B,, +CB,,) Ay *—CAx(t)
2 C, Ay *-C,Ax(?)

LQ Regulator with Forward
Gain Matrix

Au(t) = Au* (1) - C[ Ax(t)— Ax *(1) ]
= C, Ay *—C,Ax(t)

where
A AW*(t
C,2B, +CB, ] L 1 ()
CB 2 C (
A : Au(t AX(t
VO o] b 20 | o rem | X0
Input = Desired Output T C




LQ Pl Command Response Block

Diagram
Integrate error in desired (commanded) response
Ay
_CP—' C |_H‘u—| [_Hx_]
A
V() c, b= Au(f) System AX(1)
cP

Formulating Proportional-Integral
Control as a Linear-Quadratic Problem
LTI system with command input

Ax(t) =FAx(1)+ GAu(t)
Ay, =H Ax*+H Au*

Desired steady-state response to command

Ax* =B, Ay, | |Au>l< =B,Ay,

Perturbations from desired response
AX(t) = Ax(t)— Ax *
Au(t) = Au(?) — Au *
Ay ()= Ay(t) - Ay,




LQ Proportional-Integral (Pl) Control
with Command Input

Integral state

t

A& (1) = [ Ay (1) di = [[H A1)+ H,Ad(0) |t Af“’){ 56 }

Augmented dynamic system, referenced to
desired steady state

| F oo | AX(O)
RN O

AY(t) = E,A(t) + G, Al(r)

AX(1) = FAX(1) + GAi(r) AK(t)
AE(1)= HAX()+ H AR | AE()

Augmented Cost Function

[

J= % [ A% )QA%(1)+ AE' (1) QAE (1) + AW (1)RAG() |ar

0

—lT AY () O 9 AX()+ A" (HRAU(?) |dt
2Ny g | K
subject to
Ax(t)=F,A%(t)+ G, Al(t) M) 2 =
AS (1)




LQ Proportional-Integral (Pl)
Control with Command Input
The cost function is minimized by
Au(r) =-C, Ax(1)

The control signal includes the error between the
commanded and actual response

Au(t)— Aw*=—C [ Ay (1) — Ay *] AX(t) = Ax(t) — Ax *
‘ Au(t) = Au(t) — Au *
=-C,[Ax(1)- Ax*]-C, {I[Ay(t)—AyC]dt} A (1) = Ay (1) - Ay,

=-C,[Ax(1)- Ax*]-C, {j[(HxAx+H“Au)— Ayc]dt}

0

LQ Proportional-Integral (P))
Control with Command Input

The cost function is minimized by a control law of the form

Au(t)=(B,, + C,B,,) Ay, - C,Ax(t)+ C, [[ Ay — Ay(r) Jar
0

=C, Ay, - C,Ax()+C, [[ Ay - Ay(r) dt
0

Ay(f)

=3

')

4 c | h,
Ay Ah - ;
¢ —-— = [ 240 system axfy
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Integrating Action Sets |
Equilibrium Command |~ o=,
Error to Zero |

AX(t)
AE (1)

The closed-loop system

AX(1)
- is stable

:{ (F-GC,) -GC,

(Hx - HuCP) _Hucl A&(t)
Therefore
AR(1) = [ AX(1) - AX*]———0 AX(t) — 5= Ax*
Au(t) =[Au(t)— Au*]———0 Au(t)———Au*
1)=[Ay (1)~ Ay [—==—0 Ay (1) —==— Ay, |

L Equilibrium Error Due
wwj* to Constant
Disturbance is Zero

uJ

| ,
_ ) [LJ
wmA _{ }_<

Equilibrium response to constant disturbance is constant

A+ | | (F-GC,) -GC, _[L}A .
AE*(t) o (Hx_HuCP) _HuCI 0 "

Therefore

Au(t) s Au* +Allw*

Ay(1)—5=— Ay,
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Example: Open-Loop Response of a 2"9-Order
System, with and without Constant Disturbance

=02, o, =628 rad/s|

Open-Loop
2 T T T T T T
-
=3
o 1
£ Nominal Step Response
§ 0 —— With Constant Disturbance
&'
=1 L L . | .
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Time
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Ax=FAx +GAy., Ay.=1
AX = FAx + GAy . + GAW*, Ay.=1, Aw*=-2
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Example: Open-Loop and LQ
Control of 2"4-Order System
Step input, with and without LQ Control, No Disturbance
_ 1 Open-Loop and LQ Control, No Disturbance " Opgn-Loqpandv LQCgmrol.‘NorDi:slurba[\oe
7 =7 4 =z
. ;c' T8 ¥ Pk T o E 0 :
. 2
2 or \7& ﬁ" 2
‘..50 SREE S T e T TUNL T S Tt ‘:
By hJ =

i
Time Displacement

Q{(l) H Ax =FAx+GAy., Ay.=1
Ax = (F-GC,)Ax+GC, Ay, Ay, =1
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Example: LQ Control, with and
without Disturbance

Step Input, with and without Disturbance

LQ Control, with and w/o Disturbance

od
o

Displacement
o

s
&

T
= LQ Step Response
L = With Constant Disturbance
LQ Control, with and wfo Disturbance
14 h -
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Control
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Time
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Ax =(F-GC,)Ax+GC, Ay, Ay.=1
Ax = (F-GC,)Ax+GC, Ay, +GAw, Ay.=1, Aw=-2
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Example: Open-Loop, LQ, and LQ Proportional-
Integral Control of 2"-Order System

Open-Loop, LQ, and LQ-PI Control
T T T

2 T T T T T
g - ~—— Open-Loop, wiDisturbance ~ |_|
13 = LQ~PI Control, wio Disturbance
8. = LQ-PI Control, wibisturbance | _|
« = LQ Control, wiDi —
a
D -
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Example: Open-Loop, LQ, and LQ Proportional-

Integral Control of 2"9-Order System

Open-Loop, LQ, and LQ-PI Control

Ax = FAx + GAy . + GAw *

: T
Open-Loop, w/Disturbance
LQ-PI Control, w/o Disturbance
= LQ-PI Control, w/Disturbance
~— LQ Control, w/Disturbance

Ax =(F-GC,)Ax—GC,AE + GC, Ay,

Ax=(F-GC,)Ax-GC, AL+ GC, Ay,
+GAw * or

Ax=(F-GC,)Ax+GC, Ay,
+GAw *

Rate

S = O

o oo

S —
w

= © o =
I
—

-2 -15 -1 -05 0 05
Displacement

Proportional-Integral-Filter (PIF)
Controller

* Introduce
= Integration of command-response error
= Low-pass filtering of actuator input

A??(t) F G 0 AX(1) 0
Au(r) |=| 0 0 0 || Au() |+| 1 |Av()
AE(r) | LH He O a8 | [ o
i Q 0 0 || A%()
J:% | [ AX(1) A (1) AET (1) } 0 R, 0 || Au) |+Av (OR,AV() |di
0 0 0 Q | a&@)




Optimal PIF Control Law

o Physiwcal x(t)
syslem

Pure integration (high low-frequency gain)
Low-pass filtering for smooth actuator command
Lead (derivative) compensation

Zero steady-state error

Satisfies Bode criteria

AV(1) = C,A§(t) — C ,AX(1) — C,AE (1) — C Ali(r) = Afl,, (1)

19

LQ Model-Following Control

20



Implicit Model-Following
LQ Regulator

E—L_ Actual and Ideal Models
Aud0 System 280 E- Ay Ax(t) = FAx(t) + GAu(z)

“ Au() '
% Ax, (t)=F,Ax,, (1)

[c |
e

’:%T{[Aﬂw—ww]”'w[Ak(z)—Aw]}dfé%I{[ &) AT }[ w H s Hdt

J R , Au(t)
Cost-minimizing control law AX(t) =FAx(t)+ G |: Au.(t)-C MAx(t)]
Au(r) = Au.(t) - C, Ax(t) = [F-GC, | Ax(r)+ GAu, (1)

LQ control shifts closed-loop roots toward desired values
21

Explicit Model Following

ujs x(t)

Physical
iy & system

[ |
L]

= Model of the ideal system is explicitly included in the control law
= Could have lower dimension than actual system
= Here, we assume dimensions are the same

AX(t) | F o AX(t)
A%, (1) 0 F, A%, (1)

= Control law forces actual system to mimic the ideal system

G 0
0 G, || Aa,®

Aii(r) ]

22



Explicit Model Following

Output vector = error between actual and ideal state vectors

AX(t
A3 (1) 2 A%() - A%, (0 =[ 1 -1 ][ o ((z) ]

Output vector cost function

J= %T[Af (DQAF (1) + A" (1)RAi(7) | dt
0

oo

_l ~T ~T Q _Q Ai(t) ~T .
J—}[[[ AXT (1) AX,(1) }{ 0 0 }[ A%, (1) ]+Au (t)RAu(t)]dt

0

Algebraic Riccati
Equation

23

Algebraic Riccati equation

-]

FT

o e ] [r B |F o]
0 F}; lJlZ PZZ PIZ PZZ 0 ITM

Three equations

— First is the LQ Riccati equation for the actual
system; it solves for P,

0= _FTPM -PF-Q+ l)nGR_lGTPn

— Second solves for P,

0=(-F'P,-P,GR"'G")P,-F, +Q

— Third solves for P,,

0= _FAT4P22 - P22FM -Q+ PszGR_lGTPlz

24




Explicit Model
Following

c=r'( @ o ){ o
12

et e

22

+ Feedback gain is independent of the forward gains
+ Therefore, it determines the stability and bandwidth of
the actual system

- Forward gains, C-and C,, act as a “pre-filter” that
shapes the command input to have ideal system
dynamics
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Closed-Loop Root Locations for
Implicit and Explicit Model Following

Je 2
/4 Open-loop
le
Open-loop pole Closed-loop *
Desired pole =| \ 4 \
closed- loop pole % :
\u/_ Desired pole = 0

compensator pole

o

0 Explicit Model-
\ Following Root *
X
Locations
Implicit Model-
Following Root
Locations
I

Implicit model-following system - Explicit model-following system has
has nroots (n+1) to 2nroots
— nLQ closed-loop roots approach — nLQ closed-loop roots forced to
roots of ideal system large, fast values
— Relatively small feedback gains — 1 to nideal system roots specified as

input to the LQ compensator
— Relatively large feedback gains‘i6



Root Locus Analysis

27

Root Locus Analysis ‘
of Control Effectson | o/

System Dynamics : \

Graphical depiction of control effects N
on location of eigenvalues of F (or
roots of the characteristic polynomial)
Evan’s rules for root locus
construction

Imaginary
o
m
N 7
P

Locus: “the set of all points whose
location is determined by stated
conditions” (Webster’s Dictionary)

]
@
o
o
o
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Root Loci for Angle and
Rate Feedback

Variation of roots as a scalar gain, ¢, goes from 0 to «

Example: DC motor control

yelt) eft)

Desired
Rotational
Angle

Angle
- Gain

—_
va(t)

| i ( Rotary
DC Motor
- Load Valt)
I Rate I

| Gain |

Angular Rate

Angle

rlocus(Sys1), grid
figure
rlocus(Sys2), grid

% Root Locus of DC Motor Angle Control

F = [01;-1-1.414];

G = [0;1];

Hx1= [10]; % Angle Output

Hx2 = [01]; % Angular Rate Output
Sys1 = ss(F,G,Hx1,0);

Sys2 = ss(F,G,Hx2,0);

Desired
Rotational
Angle

velt) wlt)

Rotary

15

1

05

Imaginary Axis

eft)
Angin DC Motor [t
el Load [T
I Rate l
I Gain l Angular Rate

Angle Control Gain, c,, Variation -

-1 -0.5 05 1

Real Axis

29

Root Loci for
Angle and Rate
Feedback

Rate Control Gain, c,, Variation

15

1

1| [
E \

-1.5
-1.5

=1 -0.5 0

Real Axis

05 1 15

30



Effect of Parameter
Variations on Root
Location

Example: Characteristic equation of aircraft longitudinal motion

AL )=s"tas’+a,s* +as+a,
=(s—ll)(s—/'t2)(s—)»3)(s—/"t4)=(s—ll)(s—ll*)(s—ls)(s—l;)

= (s2 +20,0, s+ o, )(32 +20 0, s+, ) =0

+  What effect would variations in a; have on the locations (or locus)
of roots?

— Let “root locus gain” = k= c; = a; (just a notation change)
+ Option 1: Vary k and calculate roots for each new value
- Option 2: Apply Evans’s Rules of Root Locus Construction

31

Effect of a, Variation on
Longitudinal Root Location

Example: k= a,

A, (s)= [s4 + a3s3 + a2s2 + als]+ [k] =d(s)+ kn(s)

:(s—/ll)(s—lz)(s—%)(s_%):0

d(s): Polynomial in s

where n(s) : Polynomial in s

4 3 2
d(s)=s"+a,s" +a,s” +as

= (s— l‘l)(s— 1'2)(s— 1'3)(s— 2.'4)
n(s)=1

32




Effect of a, Variation on
Longitudinal Root Location

Example: k= a,

A, ($)=s"+ta,s’ +a,s> +ks+a, =d(s)+ kn(s)
=(s=24)(s=A,)(s=4;)(s=4,)=0

where
d(s)=s*+a,s’ +a,s’ +a,

= (S— l'l)(s— /1'2)(5— /'1,'3)(s— 1'4)

nis)=s

33

Three Equivalent Expressions
for the Polynomial

d(s)+kn(s)=0

118 g
d(s)
@ —_1 = —jn(rad) — —j180(deg)
k A 1=(De (De

34




Example: Effect of a, Variation

Original 4th-order polynomial

A, (s)=s"+2.575’+9.685> +0.2025+0.145 =0

Example: k= a,

A(s)=s*+a;s’ +a,s" +a;s+a,
= (s4 +tas’ +as’+ als) +k
= s(s3 +a,s’ +azs+a1)+k

=s(s+021)[ 5" +2.555+9.62 |+ k

k
=1
s(s+021)[ s> +2.555+9.62 ]

Example: Effect of a, Variation

Example: k= a,

A(s)=s"+a,5° +a,5° +a,s +a,
=s"+a,s° +a,5° + ks +q,
= (s4 +a,s’ +a,s’ + a0)+ ks

=[5> =0.000415+0.015 || s> +2.575+9.67 |+ ks

ks

[5°=0.000415+0.015 |[s* +2.575+9.67] -

35
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The Root Locus Criterion

All points on the locus of roots must satisfy the equation k[n(s)/d(s)] = -1
Phase angle(-1) = +180 deg

Number of roots (or poles) of the denominator = n
*  Number of zeros of the numerator = g

n(s) 1 | +  Number of roots = 4
=4, . = == - Number of zeros = 0
’ d(s) s+ as’ +ays’ +aps (nu—Q)=4 ’
n(s) s | *  Number of roots =4
=a = =—- *  Number of zeros =1
! d(s)  s'+as’+a,s’ +a, - (n-gq)=3
Spirule * Manual graphical construction
- of the root locus
- ’\<\/.. * Invented by Walter Evans
37

Origins of Roots (for k= 0)

+ Origins of the roots are the Poles of d(s)

A(s)=d(s) + kn(s) ———d(s)
" ‘ Positive a, Variation } . 4‘ Positive a, Variation \_

b % ~
PR 2
s 2] & 4 |
E : |
g 2° 1
E g |

-2 \ - -

-4 \ 2

N
N
- N -3 N
- \\ - \
-10 S, 5
Bl -8 -6 =3 2 0 2 . L] L] w -5 = - -2 - 0 1 2 4 2
Real Axls Real Axis
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Destinations of Roots (for k -> +x)
q roots go to the zeros of n(s)
d(s)+kn(s) d(s)
kK k

+ n(s)——==—n(s)

No zeros when k = a, One zero at origin when k = a,

Positive a, Variation o Positive 3, Yorlation

Imginary Axis
5 = 4 @ &

Imaginary Axis

2 X -
“ k N <
\
- 2 ~ B
- X
%l
= = 3 = v TR
Real Axis

4 4 9 2 < & 1 2 3 & £

Destinations of Roots (for k -> +x)
(n— q) roots go to infinite radius from the origin
d(s)+kn(s) _ [d(s) s k}
n(s) n(s)

k—>*oo

%[s("_@ + R] 5 +oo

_ —7180° —j360°
S(n %) = Re / —— > or Re / ——>—0

k—>+oo k—>—oo

¢ = R /180%(n=a) soo  or Re300(n=a) S oo

k—>oo k——oo

4 roots to infinite radius 3 roots to infinite radius

Fovme s, veeoe

40




(n - q) Roots Approach
Asymptotes as k—> +

Asymptote angles for positive k

+2
O(rad)zn. m7z," m=0,1,...,(n—q)—1

n—q

Asymptote angles for negative k

2
O(rad) = m7r’ m=0,1,...,(n—q)—1

n—4q

41

Origin of Asymptotes =
“Center of Gravity”

n q
26% N ZGZJ-
P il j=1

" n_

cg.

n—q

42



Imaginary Axis

Root Locus on Real Axis

 Locus on real axis

— k > 0: Any segment with odd number of
poles and zeros to the right

— k < 0: Any segment with even number of
poles and zeros to the right

43

First Example: k= a,

k

s(s+021)[ s> +2.555+9.62

Paositive a, Variation

s & & L &

0 -8

-

N
—

Y

-2 ]
Real Axis

X

5

5

Imaginary Axis

Negalive a, Variation

- -8 6 -4 -2

o 2
Real Axis
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ary Axis

Imagin:

Second Example: k = a,

ks
[5*=0.000415+0.015][ s> +2.575+9.67 ] =

Positive a, Variation Negative a, Variation

e -
=
£
o ol
o
E
-2
oo
-4
-8
-8
b L T -t -2 ] 2 4 e 8 1 -0 4 -6 -4 o ]
Real Axis Real Axis

Next Time:
Modal Properties of
LQ Regulators

45
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Supp]emenla[
Material

47

Truncation and Residualization

48



Reduction of Dynamic Model

Order

Separation of high-order models into loosely coupled or

decoupled lower order approximations
— [Rigid body] + [Flexible modes]
— Chemical/biological process with fast and slow reactions
— Economic system with local and global components
— Social networks with large and small clusters

AX fast

slow

fast fast
_ Ffast Fslow AX fast n G fast Gslow Au fast
- slow slow
Ffast Fslow Ax slow G fast Gslow Au slow
F small Ax G small Au
f f f f
+
small  F, Ax, small G, Au

49

Truncation of a Dynamic Model

Dynamic model order reduction when

— Two modes are only slightly coupled
— Time scales of motions are far apart
— Forcing terms are largely independent

|

A%,
AX:

| E R
Ax:

G, G/

I
[

AX/
n
Ax, 0

Au,
Au,

g

small
FS

I

|

F; F,

small

F, 0

0 F

Au,
Au

U

|

0
G,

small
small s

|

Au,
Au

3

Approximation: Modes can be analyzed and
control systems can be designed separately

A%, =F,Ax, +G Au,
A%, =FAx, +G Au,

50




Residualization of a Dynamic Model

+ Dynamic model order reduction when

— Two modes are coupled
— Time scales of motions are separated

|

— Fast mode is stable
A% | | F F/ |l Ax, . G, G/ | Au,
AX, F, F, Ax, G, G, Au,

F,  small Ax G, small Au,
small  F, AXx,

small G Au

s s

|
|

+ Approximation: Motions can be analyzed
separately using different “clocks”

— Fast mode reaches steady state
instantaneously on slow-mode time scale

— Slow mode produces slowly changing bias

disturbances on fast-mode time scale

Residualized Fast Mode

Fast mode dynamics

Ax, =F,Ax, +GfAuf
+(F/Ax, +G/ Au,)

~Bias

If fast mode is not stable, it could be stabilized by

“inner loop” control

Ax, =F,Ax, +G,(Au, — C,Ax
7 Xy f c =R
Augl)  Au(h Ax(f) ( )
<l System +(F/Ax, +GlAw,)
e =(F,=G,C,)ax, + G Au,
L~ ! g
Fast Mode + (Fs Ax, +G;Au, )~Em
“Inner Loop”
Control Law

51
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Fast Mode in Quasi-Steady State

Assume that fast mode reaches steady state on a time
scale that is short compared to the slow mode

0 =F,Ax,+F/Ax +G, Au, + G/Au,
Ax, =F;Ax, + FAX + G Au +G}Au,

Algebraic solution for fast variable

0 =FAx, +F/Ax +G Au, +G/Au,
F,Ax, =-F/Ax -G ,Au, - G/Au,
Ax, =—F,'(F/Ax, + G Au, + G/Au, )

53

Residualized Slow Mode

Substitute quasi-steady fast variable in
differential equation for slow variable

A%, =—F;[F," (F/Ax, + G Au, + G/ Au, ) |+ F A, +G,Au, + G Au,

=[F.-FF,'F/ |Ax +[ G, -FF,'G/ |Au, +[ G} -FF,"'G, |Au,

Residualized equation for slow variable

A A
) Au ¥ uclf — u@ System ax(
Ax =F Ax +G,
B NEW » NEW Au
s
Slow Mode -
“Outer Loop”

Control Law

Control law can be designed for reduced-order slow model,
assuming inner loop has been stabilized separately
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