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Vector Norms for Real Variables�

 L
2 norm = x 2 = xTx( )1/2 = x1

2 + x2
2 +�+ xn

2( )1/2

�� ��Norm�� = Measure of length 
or magnitude of a vector, x�

�� Euclidean or Quadratic Norm�

�� Weighted Euclidean Norm�

 

y 2 = yTy( )1/2 = y1
2 + y2

2 +�+ ym
2( )1/2

= xTDTDx( )1/2 = Dx 2

 

xTDTDx � xTQx
Q � DTD = Defining matrix
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Uniform Stability�
�� Autonomous dynamic system�

�� Time-invariant�
�� No forcing input�

�� Uniform stability about x = 0�

 �x(t) = f[x(t)]

x to( ) � � , � > 0

�� If system response is bounded, then the system 
possesses uniform stability�

Let � = � �( )
If, for every � � 0,
x t( ) � �, � � � > 0, t � t0

Then the system is uniformly stable
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Local and Global Asymptotic 
Stability�

�� Local asymptotic stability�
–� Uniform stability plus�

x t( ) t��� ��� 0

�� Global asymptotic stability�

�� If a linear system has uniform 
asymptotic stability, it also is 
globally stable�  �x(t) = F x(t)

System is asymptotically stable for any �
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Exponential Asymptotic 
Stability �

�� Uniform stability about x = 0 plus�

x t( ) � ke�� t x 0( ) ; k,� � 0

�� If norm of x(t) is contained within an 
exponentially decaying envelope with 
convergence, system is exponentially 
asymptotically stable (EAS)�

�� Linear system that is stable is EAS�
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�� x 0( )

and

x t( ) 2 dt
0

�

	  is bounded

Exponential Asymptotic 
Stability �

Therefore, time integrals of the 
norm of an EAS system are 

bounded�
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Exponential 
Asymptotic Stability �

Weighted Euclidean norm and its square are 
bounded if system is EAS�

Dx t( ) dt
0

�

� = xT t( )DTDx t( )�� ��
1/2
dt

0

�

� is bounded

with � > Q = DTD > 0

xT t( )Qx t( )�� ��dt
0

�

� is bounded

Conversely, if the weighted Euclidean norm is 
bounded, the system is EAS�
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Initial-Condition Response of an 
EAS Linear System�

�� To be shown�
–� Continuous-time LTI system is stable if all of its 

eigenvalues have negative real parts�
–� Discrete-time LTI system is stable if all of its 

eigenvalues lie within the unit circle�

x(t) = �� t,0( )x(0) = eF t( )x(0)

x(t) 2 = xT (0)��T t,0( )�� t,0( )x(0) is bounded
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Lyapunov��s First Theorem�

 

�x(t) = f[x(t)] is stable at xo  = 0 if

��x(t) = �f[x(t)]
�x xo =0

�x(t) is stable

�� A nonlinear system is asymptotically stable at 
the origin if its linear approximation is stable at 
the origin, i.e., �
–� for all trajectories that start ��close enough���
–� within a stable manifold�

��At the origin�� is a fuzzy concept�
9�

Lyapunov��s Second 
Theorem*�

�+@3+�'�8)'1'7�Lyapunov function��'�548/9/;+�*+@3/9+�
function of the state in the region of interest�

V * x * t( )�� �� � 0

* Who was Lyapunov?  see 
http://en.wikipedia.org/wiki/Aleksandr_Lyapunov�

V = E = mV
2

2
+mgh; E

mg
= E
weight

= V
2

2g
+ h

V = 1
2
xTx; V = 1

2
xTPx

Examples�
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Lyapunov��s 
Second Theorem�

Evaluate the time derivative of the Lyapunov function�

V * x * t( )�� �� � 0

 

dV
dt

= �V
�t

+ �V
�x
�x

= �V
�x
�x for autonomous systems

�� If                   in the neighborhood of the origin, �
                        the origin is asymptotically stable�

dV
dt

< 0
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Quadratic Lyapunov 
Function�

Lyapunov function�

 

dV
dt

= �V
�x
�x = xT t( )P�x t( ) + �xT t( )Px t( )

= xT t( ) PF + FTP( )x t( ) � �xT t( )Qx t( )

V x t( )�� �� = x
T t( )Px t( )

Rate of change for quadratic Lyapunov function�

 �x(t) = F x(t)
Linear, Time-Invariant System�
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Lyapunov Equation�

PF + FTP = �Q
with

P > 0, Q > 0

The LTI system is stable if the Lyapunov 
+6:'9/43�/8�8'9/8@+*�</9.�548/9/;+�*+@3/9+ P 

and Q�
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Lyapunov Stability: 
1st-Order Example�

PF + FTP = �Q
with p >  0,  a <  0
2pa <  0 and q > 0
�  system is stable

 ��x(t) = a�x(t) , �x(0) given
1st-order initial-

condition response�

F = a, P = p,Q = q

 

�x(t) = ��x(t)dt
0

t

� = a�x(t)dt
0

t

�
= eat�x(0)

Unstable, a > 0�

Stable, a < 0�

PF + FTP = �Q
with p >  0,  a > 0
2pa <  0 and q < 0
�  system is unstable
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Lyapunov Stability and the 
HJB Equation�

�V *
�t

= �min
u(t )

H

V x t( )�� �� = x
T t( )Px t( )

dV
dt

< 0

Lyapunov stability� Dynamic programming 
optimality�
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Laplace Transforms and 
Linear System Stability�
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Fourier Transform of a 
Scalar Variable �

F x(t)[ ] = x( j� ) = x(t)e� j� t
��

�

� dt, � = frequency, rad / s

x(t)

x( j� ) = a(� ) + jb(� )

x(t) : real variable
x( j� ) : complex variable

= a(� )+ jb(� )
= A(� )e j� (� )

 

A : amplitude
� : phase angle
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Laplace Transforms of 
Scalar Variables �

Laplace transform of a scalar variable is a complex number�
s is the Laplace operator, a complex variable�

 
L x(t)[ ] = x(s) = x(t)e� st dt

0

�

� , s = � + j� , ( j = i = �1)

 L x1(t) + x2 (t)[ ] = x1(s) + x2 (s)

Laplace transformation is a linear operation�

 L a x(t)[ ] = a x(s)
x(t) : real variable
x(s) : complex variable

= a(� ) + jb(� )
= A(� )e j� (� )

Multiplication by a constant�

Sum of Laplace transforms�
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Laplace Transforms of 
Vectors and Matrices �

Laplace transform of a 
vector variable�

 

L x(t)[ ] = x(s) =
x1(s)
x2 (s)
...

�

�

�
�
�

�

�

�
�
�

Laplace transform of a 
matrix variable�

 

L A(t)[ ] = A(s) =
a11(s) a12 (s) ...
a21(s) a22 (s) ...
... ... ...

�

�

�
�
�

�

�

�
�
�

Laplace transform of a time-derivative�

  L �x(t)[ ] = sx(s) � x(0)
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�x(t) = Fx(t) +Gu(t)
y(t) = Hxx(t) +Huu(t)

Time-Domain System Equations�

Laplace Transforms of System Equations�

sx(s) � x(0) = Fx(s) +Gu(s)
y(s) = Hxx(s) +Huu(s)

Transformation of the 
System Equations �

Dynamic Equation�

Output Equation�

Dynamic Equation�

Output Equation�
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Differential Equations for 2nd-Order 
System�

Laplace Transforms of 2nd-Order System�

Second-Order Oscillator�

Dynamic Equation�

Output Equation�
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+

0
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Dynamic Equation�

Output Equation�
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Laplace Transform of the State Vector 
Response to Initial Condition and Control �

Rearrange Laplace Transform of Dynamic Equation�
sx(s)� Fx(s) = x(0)+Gu(s)
sI� F[ ]x(s) = x(0)+Gu(s)

x(s) = sI� F[ ]�1 x(0)+Gu(s)[ ]

sI � F[ ]�1 = Adj sI � F( )
sI � F

(n x n)

The matrix inverse is�

Adj sI� F( ) : Adjoint matrix (n � n) Transpose of matrix of cofactors
sI� F = det sI� F( ) : Determinant 1�1( )

22�



Characteristic Polynomial of a 
Dynamic System �

sI � F[ ]�1 = Adj sI � F( )
sI � F

(n x n)

Characteristic polynomial of the system�
sI� F = det sI� F( )

� �(s) = sn + an�1s
n�1 + ...+ a1s + a0

Matrix Inverse�

sI � F( ) =

s � f11( ) � f12 ... � f1n
� f21 s � f22( ) ... � f2n
... ... ... ...
� fn1 � fn2 ... s � fnn( )

�

�

�
�
�
�
�

�

�

�
�
�
�
�

(n x n)

Characteristic matrix of the system�
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Eigenvalues�
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Eigenvalues of the System �

�(s) = sn + an�1s
n�1 + ...+ a1s + a0 = 0

= s � �1( ) s � �2( ) ...( ) s � �n( ) = 0

Characteristic equation of the system�

Eigenvalues, �i , are solutions (roots) of the polynomial, � s( ) = 0

 

�i = � i + j� i

 

�*i = � i � j� i
s Plane�
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s Plane�

 

� = cos�1�

�1 = �1 + j�1

�2 = �1 � j�1

�1 = �1, �2 = � 2

Factors of a 2nd-Degree  
Characteristic Equation�

� n :  natural frequency, rad/s
� :     damping ratio, dimensionless

 

sI � F =
s � f11( ) � f12

� f21 s � f22( )
� � s( )

= s2 � f12 + f21( )s + f11 f22 + f12 f21( )
= s � �1( ) s � �2( ) = 0  [real or complex roots]

= s2 + 2��ns +�n
2   with complex-conjugate roots
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z Transforms and 
Discrete-Time Systems�

27�

Application of Dirac Delta 
Function to Sampling Process�

�xk = �x tk( ) = �x k�t( )
�� Periodic sequence of numbers�

�x k�t( )� t0 � k�t( )

� t0 � k�t( )=
�, t0 � k�t( ) = 0
0, t0 � k�t( ) � 0

�
�



	


� t0 � k�t( )dt = 1
t0 � k�t( )��

t0 � k�t( )+�
�

�� Periodic sequence of scaled delta functions�

�� Dirac delta function�

28�



Laplace Transform of a 
Periodic Scalar Sequence �

�� Laplace transform of the delta function sequence �

 

L �x k�t( )� t � k�t( )�� 	
 = �x(z) = �x k�t( )� t � k�t( )e� s�t
0

�

� dt

= �x k�t( )e� sk�t
k=0

�

� � �x k�t( )z�k
k=0

�

�

�xk = �x tk( ) = �x k�t( )�� Periodic sequence of numbers�

�x k�t( )� t � k�t( )�� Periodic sequence of scaled delta 
functions�
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z Transform of the Periodic 
Sequence �

 
L �x k�t( )� t � k�t( )�� �	 = �x k�t( )

k=0

�

� e� sk�t � �x k�t( )
k=0

�

� z�k

 

z � es�t advance by one sampling interval[ ]
z�1 � e� s�t delay by one sampling interval[ ]

z Transform (time-shift) Operator�

z transform is the Laplace transform of 
the delta function sequence �
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z Transform of  a Discrete-Time 
Dynamic System �

�xk+1 = ���xk + �� �uk + ���wk

System equation in sampled time domain�

Laplace transform of sampled-data system equation 
(��z Transform��)�

z�x(z) � �x(0) = ���x(z) + ���u(z) + ���w(z)
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z Transform of  a Discrete-Time 
Dynamic System �

z�x(z) � ���x(z) = �x(0) + ���u(z) + ���w(z)

zI � ��( )�x(z) = �x(0) + ���u(z) + ���w(z)

 

�x(z) = zI���( ) �1 �x(0) + ���u(z) + ���w(z)[ ]

Rearrange�

Collect terms�

Pre-multiply by inverse�
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Characteristic Matrix and 
Determinant of Discrete-Time System �

 

zI���( ) �1=
Adj zI���( )
zI���

(n x n)

Characteristic polynomial of the discrete-time model�

zI� �� = det zI� ��( ) � �(z)

= zn + an�1z
n�1 + ...+ a1z + a0

 

�x(z) = zI���( ) �1 �x(0) + ���u(z) + ���w(z)[ ]

Inverse matrix�
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Eigenvalues (or Roots) of the 
Discrete-Time System �

Characteristic equation of the system �

Eigenvalues are complex numbers that 
can be plotted in the z plane�

�i = � i + j� i �*i = � i � j� i

�(z) = zn + an�1z
n�1 + ...+ a1z + a0

= z � �1( ) z � �2( ) ...( ) z � �n( ) = 0

z Plane�

Eigenvalues, �i , of the state transition matrix, ��, are 
solutions (roots) of the polynomial, � z( ) = 0
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Laplace Transforms of Continuous- 
and Discrete-Time State-Space 

Models�

�x(z) = zI� ��( ) �1���u(z)
�y(z) = H zI� ��( ) �1���u(z)

�x(s) = sI� F( ) �1G�u(s)
�y(s) = H sI� F( ) �1G�u(s)

Initial condition and disturbance effect neglected�

Equivalent discrete-time model�
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Scalar Transfer Functions of 
Continuous- and Discrete-Time 

Systems�

�y(s)
�u(s)

= H sI � F( ) �1G =
HAdj sI � F( )G

sI � F
= Y s( )

�y(z)
�u(z)

= H zI � ��( ) �1�� =
HAdj sI � ��( )��

sI � ��
= Y z( )

dim(H) = 1� n
dim(G) = n �1
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Comparison of s-Plane and z-
Plane Plots of Poles and Zeros�

�� s-Plane Plot of Poles and Zeros�
�� Poles in left-half-plane are stable�
�� Zeros in left-half-plane are 

minimum phase�

�� z-Plane Plot of Poles and Zeros�
�� Poles within unit circle are stable�
�� Zeros within unit circle are 

minimum phase�

Increasing sampling rate 
moves poles and zeros 

toward the (1,0) point�

Note correspondence of 
�)(6"/,�.$)(-� 37�

Next Time:�
Time-Invariant Linear-
Quadratic Regulators�

38�



SSuupppplleemmeennttaarryy  
MMaatteerriiaall��
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Small Perturbations from 
Steady, Level Flight�

 

���x (t) = F�x(t) + G�u(t) + L�w(t)

�x(t) =

�x1

�x2

�x3

�x4

�

�

�
�
�
�
�

�

	

�
�
�
�
�

=

�V
��
�q
��

�

�

�
�
�
�
�

�

	

�
�
�
�
�

velocity, m/s
flight path angle, rad

pitch rate, rad/s
angle of attack, rad

�u(t) =
�u1

�u2

�

�
�
�

�

�
�
�
= ��E

��T
�

�
�

�

�
�

elevator angle, rad
throttle setting, %

�w(t) =
�w1

�w2

�

�
�
�

�

�
�
�
=

�Vw
��w

�

�
�
�

�

�
�
�

~horizontal wind, m/s
~vertical wind/Vnom,  rad
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Eigenvalues of Aircraft 
Longitudinal Modes of 
Motion�
sI� F = det sI� F( ) � �(s) = s � �1( ) s � �2( ) s � �3( ) s � �4( )

= s � �P( ) s � �*P( ) s � �SP( ) s � �*SP( )
= s2 + 2� P� nP

s +� nP
2( ) s2 + 2� SP� nSP

s +� nSP
2( ) = 0

Eigenvalues determine the damping and natural 
frequencies of the linear system��s modes of motion�

�P ,�nP( ) : phugoid (long-period) mode

�SP ,�nSP( ) : short-period mode
41�

�� 0 - 100 sec�
�� Reveals Long-Period Mode�

Initial-Condition 
Response of Business 
Jet at TwoTime Scales�

�� 0 - 6 sec�
�� Reveals Short-Period Mode�

Same 4th-order responses viewed over different periods of time�

�x(t) =

�x1

�x2

�x3

�x4

�

�
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�
�
�
�

�
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�
�
�
�

=

�V
��
�q
��

�
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�
�

�

	

�
�
�
�
�

velocity, m/s
flight path angle, rad

pitch rate, rad/s
angle of attack, rad
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