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Vector Norms for Real Variables

« “Norm” = Measure of length
or magnitude of a vector, x

_

+ Euclidean or Quadratic Norm
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+  Weighted Euclidean Norm
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Uniform Stability

= Autonomous dynamic system
= Time-invariant

= No forcing input X(Z) = f[X(t)]

=  Uniform stability about x =0

[x(t,)] <8, 650

Let 6=6(¢)
If, for every € 20,
[x(t)|<e, e28>0, t=¢,

Then the system is uniformly stable

= |f system response is bounded, then the system
possesses uniform stability

Local and Global Asymptotic
Stability

Local asymptotic stability TN e
— Uniform stability plus / [\
@ 3

[x(2)|—==—0

Global asymptotic stability

’System is asymptotically stable for any 8‘

If a linear system has uniform .
asymptotic stability, it also is x(1)=F x(1)

globally stable



Exponential Asymptotic
Stability

Uniform stability about x = 0 plus i vﬁ_ﬁ

(1)< ke [x(0)

 k,a=0

If norm of x(f) is contained within an
exponentially decaying envelope with
convergence, system is exponentially e
asymptotically stable (EAS) ﬂ:)
n/

Linear system that is stable is EAS

Exponential Asymptotic
Stability

R —at _ E —ot
k_([e dt = (a)e

Therefore, time integrals of the
norm of an EAS system are
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bounded
o = k
=[x 1< £ o
0 0 i
and évﬁ
T‘ ‘x(t)‘ ‘2 dt is bounded :
0 Yt & 8 4 B. 5 7 8 o »




Weighted Euclidean norm and its square are
bounded if system is EAS

T||Dx(t)||dt = TI:XT (t)DTDX(t)]”2 dt is bounded
0 0

witheo>Q=D'D>0

j[xT (t)Qx(t)]dt is bounded

0

Conversely, if the weighted Euclidean norm is
bounded, the system is EAS

Initial-Condition Response of an
EAS Linear System
x(1) = ®(1,0)x(0) = £""x(0)
x| =x" (0)®" (£,0)®(£,0)x(0) is bounded

To be shown
— Continuous-time LTI system is stable if all of its
eigenvalues have negative real parts
— Discrete-time LTI system is stable if all of its
eigenvalues lie within the unit circle



Lyapunov’ s First Theorem ﬁ L

+ A nonlinear system is asymptotically stable at
the origin if its linear approximation is stable at
the origin, i.e.,

— for all trajectories that start “close enough”
— within a stable manifold

x(t) = f[x(¢)] is stable at x, =0 if
AX(t) = @ AX(t) is stable
X

x, =0

0

“At the origin” is a fuzzy concept

Lyapunov’ s Second
Theorem*

Define a scalar Lyapunov function, a positive definite
function of the state in the region of interest

va[x*()]20
Examples 5 5
mV E Vv
V=E= +mgh; —=———=—+
mg weight 2g

1 1
V= EXTX; V==—x"Px

* Who was Lyapunov? see
http:/en.wikipedia.org/wiki/Aleksandr Lyapunov




V*[x*(r)]zo Lyapunov s
Second Theorem

Evaluate the time derivative of the Lyapunov function

dV 8V BV
dr ot ax

v
= —X for autonomous systems
X

T <0/ inthe neighborhood of the origin, ‘ ﬁ
dr the origin is asymptotically stable '
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Quadratic Lyapunov
Function

Lyapunov function Linear, Time-Invariant System

VI:X :| x Px x(1)=F x(1)

Rate of change for quadratic Lyapunov function

dV oV ) T
» :a—Xx =x" (1)Px(z)+x" (1)Px(z)

=x" (t)(PF+F"P)x(r) = —x" (1) Qx(r)
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Lyapunov Equation

The LTI system is stable if the Lyapunov
equation is satisfied with positive-definite P
and Q

PF+F'P=-Q
with
P>0, Q>0

Lyapunov Stability:
1st-Order Example

13

Y - 25 1st-order initial-
[Ak(r) = aAx(r) . Ax(0) given] condition responss
2
F =a, P =p, = Unstable, a >0
p.Q=g¢ s Unstable, >
' ' 1 . ' i
Ax(t) = [ Ai()dr = [ adx()dr " Stable,a<0 | i | |
0 0 05 Do Tr—
= ¢ Ax(0) ' S
2 4 6 10
PF+F P=-Q PF+F'P=-Q

withp > 0,a < 0
2pa < 0andg>0

". system is stable

withp > 0,a>0
2pa < 0andg<O0
*. system is unstable

14




Lyapunov Stability and the
HJB Equation

V[x(0)]=x (1)Px(1)

Lyapunov stability Dynamic programming
optimality
dv aV * :
—<0 =—min H
dt ot u(r)
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Laplace Transforms and
Linear System Stability

16



Fourier Transform of a

Scalar Variable

oo

F[x(t)] =x(jw) = I x(t)e’dt, = frequency,rad /s

—oo

x(t): real variable

x(jo):
=a(w)+ jb(w)

complex variable

— A(w)e.iw(w)

[ |
[0\ E@=a@rb@] |

amplitude

phase angle

5 of
3 | .
2 .
* _0.0sf (D

| Imaginary

-0.1*- -
0 5 10 15 20 25 30 35 40 45
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Laplace Transforms of

Scalar Variables

Laplace transform of a scalar variable is a complex humber
s is the Laplace operator, a complex variable

L[x(t)]=x(s)=Tx(t)e—“dt, s=0+jo, (j=i=+-1)

Laplace transformation is a linear operation

Multiplication by a constant
L[a x(t)] =ax(s)

Sum of Laplace transforms

x(¢): real variable
x(s): complex variable
=a(w)+ jb(w)
= A(w)eﬂp(w)

L[x,(0)+x,®)] = x,(s)+ x,(5)



Laplace Transforms of
Vectors and Matrices

Laplace transform of a Laplace transform of a
vector variable matrix variable

a, (s) a,(s) ]

x,(s)

L[x(t)]=x(s) = { x,(s) ] L[A®)]=A(s)=

a, (s) a,(s) ..

Laplace transform of a time-derivative

L[x(t)] = sx(s)—x(0)
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Transformation of the
System Equations

Time-Domain System Equations

x(1) = Fx(t) + Gu(?) | Dynamic Equation |

y(@)=H x(z)+H u(z)

’ Output Equation ‘

Laplace Transforms of System Equations

sx(s)—x(0)=Fx(s)+ Gu(s) | Dynamic Equation |
y(s)=H_x(s)+H u(s)

’ Output Equation ‘

20



Second-Order Oscillator

Differential Equations for 2"d-Order
System

x,(0)
X%, (1)

|
|

y,(0)
¥,(0)

e
H

10
0 1

1
2o,

|

x,(¢)
x,(1)

x,(1)

st
H

H

0
0

(O]

o

0

2
n

}u(l)
x,(1) }

X, (1)

Laplace Transforms of 2"d-Order System

’ Dynamic Equation ‘

’ Output Equation ‘

5%, (5) = x,(0)
5%, (8) = x,(0)

o,

|

»(s)
¥,(8)

Mo
1]

2

1
20w,

x,(s)

x,(s)

}r

x,(s)

X, (s)

}l
|

0
0

o

} [ 0 }
+ ,  |u(s)
wn

x,(s)

x,(5)

|

’ Dynamic Equation ‘

’ Output Equation ‘
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Laplace Transform of the State Vector
Response to Initial Condition and Control

Rearrange Laplace Transform of Dynamic Equation

sx(s)-Fx(s)=x(0)+Gu(s)
[sI-F]x(s)=x(0)+Gu(s)
x(s)=[sI-F] " [x(0)+Gu(s)]

The matrix inverse is
3 Adj(sI— F)
~|sI-F

[sI-F]"

(nxn)

Adj(sI-F): Adjoint matrix (nxn) Transpose of matrix of cofactors
|sI—F|=det(sI-F): Determinant (1x1)

22



Characteristic Polynomial of a

Dynamic System
Matrix Inverse
Adj(sI-F)
|sI — F|

[sI-F]' =

(nxn)

Characteristic matrix of the system

(S - fn) —fi2 e =
(1-F)=| o G=fa) o

~fu S (=1
Characteristic polynomial of the system
|sI—F| = det(sI—F)

=A(s)=s"+a, 5" +..+as+a, 23

Eigenvalues

24



Eigenvalues of the System

Characteristic equation of the system

A(s)=s"+a, s""'+..+as+a,=0
(5= A)(s =) () (5= A,) =0

Eigenvalues, A, are solutions (roots) of the polynomial, A(s) =0

A =0+ jo, g
Ai= O,— jwi - '
s Plane
’ 25
Factors of a 2"d-Degree
Characteristic Equation
|s1—F|= b=h) 2 A(s) A O (1 £e
—fa (s_fzz) E
=S2_(f12+fﬂ)s+(fl1fzz+flzf21) E §
:(S —ll)(S—flz):O [real or complex roots] ; :
=s"+2{w,s+®. with complex-conjugate roots : d=cos &
*s“""i, Real

’)'1 =0, 4 =O'2‘

)“1 =0,+jo,

;L2 =0,— jo,

, : natural frequency, rad/s

{: damping ratio, dimensionless

26



Z Transforms and
Discrete-Time Systems

27

Application of Dirac Delta
Function to Sampling Process

» Periodic sequence of humbers
Ax, = Ax(t,) = Ax(kAt)

&)

= Dirac delta function [

8(1,—kar)=] (1, —kAr)=0 } H

0, (t,—kAt)#0

(tg—kAt)+e
-[(z(,—km),g 6(t0 - kAl‘)dt =1

= Periodic sequence of scaled delta functions

Ax(kAt)5 (1, — kAt)

28



atllte, Laplace Transform of a

llu.‘

Periodic Scalar Sequence

* Periodic sequence of numbers ‘Axk = Ax(t,) = Ax(kAt)‘
= Periodic sequence of scaled delta ‘Ax(kAt)5(t— kAt)‘
functions

= Laplace transform of the delta function sequence

L[ Ax(kAr)S(1 - kAr)] = Ax(z) = [ Ax(kAt)S (1 - kar)eds

M

= Ax(kAt)e™™ £ Ax(kAt)z
k=0

>~
1l

0

Z Transform of the Periodic
Sequence

z transform is the Laplace transform of
the delta function sequence

oo

L[ Ax(kAt)S(t — kAt) |= Y Ax(kAt)e ™ = iAx(kAt)z"‘

k=0 k=0

z Transform (time-shift) Operator

z=¢e™  [advance by one sampling interval |

7' 2¢’ [delay by one sampling interval]

29
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Z Transform of a Discrete-Time
Dynamic System

System equation in sampled time domain

Ax,,, =DAx, +T Au, + AAw,

Laplace transform of sampled-data system equation
(“z Transform”)

7AX(7) — Ax(0) = D AX(2) + TAu(z) + AAw(2)
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Z Transform of a Discrete-Time
Dynamic System

Rearrange

7AX(z7) — D Ax(z) = Ax(0)+ T'Au(z) + AAw(2)

Collect terms

(21— ®)Ax(z) = Ax(0) + TAu(z) + AAW(z)

Pre-multiply by inverse

Ax(z) = (zI-®) "[Ax(0) + TAu(z) + AAW(z)]

32



Characteristic Matrix and
Determinant of Discrete-Time System

Ax(z) = (zI-®) '[Ax(0) + TAu(z) + AAW(z)]

Inverse matrix
. Adj(z1-D)
A-®) = nxn
( ) |zI — (I)| ( )

Characteristic polynomial of the discrete-time model

|zl —®| =det(zI- @)= A(2)

=7"+a,_ 7" +..+taz+a,
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Eigenvalues (or Roots) of the
Discrete-Time System

Characteristic equation of the system

Az)=7"+a, 7" +..+az+a,
=(z-4)(z=4,)(..)(z—4,)=0

Eigenvalues, /., of the state transition matrix, ®, are

solutions (roots) of the polynomial, A(z) =0

Eigenvalues are complex numbers that N
can be plotted in the z plane 2 TN
2’;‘ =0, t o, /1,- =0, — O, T/\‘l ' > -
\\
Z Plane \\\l’/ 2
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Laplace Transforms of Continuous-
and Discrete-Time State-Space
Models

Initial condition and disturbance effect neglected

Ax(s)=(sI-F)'GAu(s)
Ay(s)=H(sI-F) 'GAu(s)

Equivalent discrete-time model

Ax(z)=(z1-®) 'TAu(z)
Ay(z)=H(z1- @) 'TAu(z)
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Scalar Transfer Functions of
Continuous- and Discrete-Time
Systems

dim(H)=1xn
dim(G)=nx1
Ay(s) _ H(sI-F)'G = HAdj(sI-F)G _ v (s)
Au(s) |sI—F|

HAdj(sI-®)I
_ (s ) =Y (z)
|sI— @|

DO _g(a-@)'T
Au(z)
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Comparison of s-Plane and z-
Plane Plots of Poles and Zeros

= s-Plane Plot of Poles and Zeros = z-Plane Plot of Poles and Zeros

= Poles in left-half-plane are stable = Poles within unit circle are stable
= Zeros in left-half-plane are = Zeros within unit circle are
minimum phase minimum phase

ju

4

2

T T T 1

! I .| B [ TR O S S =
3 3 2 2 A X
2/"_'
ol-
)
Note correspondence of Increasing sampling rate
configurations moves poles and zeros
toward the (1,0) point

Next Time:
Time-Invariant Linear-
Quadratic Regulators
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SUPPLEMENTARY
MATERIAL
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Small Perturbations from
Steady, Level Flight

AXx(1) =FAx(t)+ GAu(r) + LAw(?)

Ax, AV velocity, m/s
AX(r) = Ax, _ Ay flight path angle, rad

Ax, Agq pitch rate, rad/s

Ax, A angle of attack, rad

| asT throttle setting, %

I Au elevator angle, rad
sy =| }_[ ASE } g

AW(1) = | AV, ~horizontal wind, m/s
W= Aw, - Ao, ~vertical wind/V,_, , rad




Eigenvalues of Aircraft
Longitudinal Modes of
Motion

|sSI-F|=det(sI-F)=A(s)=(s-4,)(s—4,)(s = 4,)(s— 4,)
=(s—7LP)(S—Z*P)(S—ZSP)(S—A*SP)

= (s2 +20,0, s+, )(s2 +20,0, s+, ) =0

Eigenvalues determine the damping and natural
frequencies of the linear system’ s modes of motion

(C P, ) : phugoid (long-period) mode

(§ @, ) : short-period mode
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Initial-Condition

Response of Business .- g; { M ﬂig;;a:tz%il;:ad
Jet at TwoTime Scales | ‘= - *- =&"*™

Same 4h-order responses viewed over different periods of time

0-100 sec - 0-6sec
Reveals Long-Period Mode + Reveals Short-Period Mode




