SLOVNÍK LAPLACEOVY TRANSFORMACE

$$
F(s)=\mathrm{L} \quad\{f(t)\}=\int_{0}^{\infty} f(t) \cdot e^{-s t} \cdot d t
$$

Originál $f(t)$	Obraz $F(s)$	Originál $f(t)$	Obraz $F(s)$
k	$\frac{k}{s}$	$e^{-b t} \cdot \cos (a \cdot t)$	$\frac{s+b}{(s+b)^{2}+a^{2}}$
t^{n}	$\frac{n!}{s^{n+1}}$	$e^{-b t} \cdot \sin (a \cdot t)$	$\frac{a}{(s+b)^{2}+a^{2}}$
$e^{\text {Fat }}$	$\frac{1}{s \pm a}$	$t \cdot e^{-a t}$	$\frac{1}{(s+a)^{2}}$
$\frac{1}{a} \cdot\left(1-e^{-a t}\right)$	$\frac{1}{s \cdot(s+a)}$	$e^{-a t}(1-a \cdot t)$	$\frac{s}{(s+a)^{2}}$
$\sin (a \cdot t)$	$\frac{a}{s^{2}+a^{2}}$	$\frac{e^{-b t}-e^{-a t}}{a-b}$	$\frac{1}{(s+a) \cdot(s+b)}$
$\cos (a \cdot t)$	$\frac{s}{s^{2}+a^{2}}$	$\frac{a \cdot e^{-a t}-b \cdot e^{-b t}}{a-b}$	$\frac{s}{(s+a) \cdot(s+b)}$
$\sinh (a \cdot t)$	$\frac{a}{s^{2}-a^{2}}$	$1-\cos (a \cdot t)$	$\frac{a^{2}}{s \cdot\left(s^{2}+a^{2}\right)}$
$\cosh (a \cdot t)$	$\frac{s}{s^{2}-a^{2}}$	$t^{n} \cdot e^{-a t}$	$\frac{n!}{(s+a)^{n+1}}$

